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mean on the multidecadal time scale through the interhemi-
spheric mode called the Atlantic Multidecadal Oscillation 
(AMO). The Pacific Decadal Oscillation (PDO) has twice 
as large a variance as the AMO, but its contribution to GST 
is only 1/10 that of the AMO because of its compensating 
patterns of cold and warm SST in northwest and northeast 
Pacific. Its teleconnection pattern, the Pacific/North America 
(PNA) pattern over land, is also found to be self-cancelling 
when globally averaged because of its alternating warm and 
cold centers. The Interdecadal Pacific Oscillation (IPO) is 
not a separate mode of variability but contains AMO and 
PDO. It contributes little to the global mean, and what it 
contributes is mainly through its AMO component. A better 
definition of a Pacific low-frequency variability is through 
the IPO Tripole Index (TPI), using difference of averaged 
SST in different regions of the Pacific. It also has no contri-
bution to the GSST and GST due to the PDO being its main 
component.

Keywords  PDO · IPO · ENSO · AMO · Rotated EOF · 
Global-mean temperature variability

1  Introduction

It has often been noted that the observed global-mean sur-
face temperature (GST) has prominent variations about the 
positive trend of global warming. In addition to the response 
to time-varying anthropogenic and natural forcing, there are 
some major modes of internal variability arising from the 
oceans. The oceans are the source of low-frequency vari-
ability because of their higher heat capacity compared to 
the atmosphere and land. These forms of variability mani-
fest themselves as sea-surface temperature (SST) quasi-
oscillations usually identified from their distinct spatial 

Abstract  The observed global-mean surface tempera-
ture (GST) has been warming in the presence of increas-
ing atmospheric concentration of greenhouse gases, but 
its rise has not been monotonic. Attention has increasingly 
been focused on the prominent variations about the linear 
trend in GST, especially on interdecadal and multidecadal 
time scales. When the sea-surface temperature (SST) and 
the land- plus-ocean surface temperature (ST) are averaged 
globally to yield the global-mean SST (GSST) and the GST, 
respectively, spatial information is lost. Information on both 
space and time is needed to properly identify the modes of 
variability on interannual, decadal, interdecadal and multi-
decadal time scales contributing to the GSST and GST vari-
ability. Empirical Orthogonal Function (EOF) analysis is 
usually employed to extract the space–time modes of climate 
variability. Here we use the method of pair-wise rotation of 
the principal components (PCs) to extract the modes in these 
time-scale bands and obtain global spatial EOFs that corre-
spond closely with regionally defined climate modes. Global 
averaging these clearly identified global modes allows us to 
reconstruct GSST and GST, and in the process identify their 
components. The results are: Pacific contributes to the global 
mean variation mostly on the interannual time scale through 
El Nino-Southern Oscillation (ENSO) and its teleconnec-
tions, while the Atlantic contributes strongly to the global 
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patterns and frequency bands. On interannual time scale, 
there are large variations of the tropical Pacific SST due 
to El Nino-Southern Oscillation (ENSO) (McPhaden et al. 
2006; Sarachik and Cane 2010), with warm El Nino epi-
sodes and cold La Nina episodes affecting the global-mean 
land–ocean surface temperature with the same sign through 
teleconnections from the tropics to the extratropics (Wal-
lace and Gutzler 1981; Simmons et al. 1983). On longer 
time scales, the attribution of the global-mean variation to 
various climate modes of variability is more controversial. 
There may exist two additional major modes of climate vari-
ability in the SST of the Pacific Ocean: the Pacific Decadal 
Oscillation (PDO) on decadal time scale (Mantua et al. 
1997; Minobe 1999), and the Interdecadal Pacific Oscilla-
tion (IPO), which, as its name implies, is interdecadal and a 
pan-Pacific mode of variability (Folland et al. 1999; Power 
et al. 1999; Parker et al. 2007). In the Atlantic basin there 
is a prominent variability of its SST on multidecadal time 
scale, called the Atlantic Multidecadal Oscillation (AMO) 
(Folland et al. 1986; Schlesinger and Ramankutty 1994; 
Delworth and Mann 2000; Schlesinger et al. 2000; Knight 
et al. 2005; Wu et al. 2011). It was thought that the AMO 
is largely responsible for the global-mean surface tempera-
ture variation in the 60–70 year time scale (Wu et al. 2011), 
although recently it has been proposed that it is the IPO that 
is responsible for such a multidecadal variation in the global 
mean (Meehl et al. 2016). The PDO has also been proposed 
for this role (Trenberth 2015). There is also the controversy 
on whether such a variation in the global mean is caused 
by time-varying anthropogenic aerosol forcing (Booth et al. 
2012; Zhang et al. 2013).

One previous approach for gaining some information on 
the composition of the GST variation is to decompose this 
time series into its various characteristic timescales. Using 
the method of Ensemble Empirical Mode Decomposition 
(EEMD) (Wu and Huang 2009), Wu et al. (2011) extracted 
the component responsible for the multidecadal variation 
of the GST. Two-dimensional surface temperature was then 
projected onto this time component to yield the spatial struc-
ture of the mode that is responsible for the multidecadal 
variation of the global mean. It was found that the center of 
action of this mode is in the Atlantic, with a spatial pattern 
that resembles the AMO.

Figure 1 is an updated version of the figure in Wu et al. 
(2011). In addition to showing the multidecadal frequency, 
we present all frequency components in the following man-
ner. We divide the variability into three groups: the “high 
frequencies” include all periods below 10 years, and the 
“low frequencies” include all frequencies with periods 
above 10 years. The latter includes decadal, interdecadal 
and multidecadal. The third group is the secular trend, 
defined as the non-oscillatory part of the time series (Wu 
et al. 2007). Figure 1a shows the observed global average of 

the HadCRUT4.5 land + ocean surface temperature (Brohan 
et al. 2006; Morice et al. 2012) (in black) and its smoothed 
version (in blue). The smoothed version is the sum of the 
secular trend (brown) and the low-frequency part (red) of 
the GST. The variable global warming rates can be seen 
clearly in the smoothed data, including the global warming 
slowdown in the twenty-first century and a prior such period 
in the mid twentieth century, as well as periods in between 
when global warming accelerated, with the interannual fluc-
tuations (green) superimposed upon the smoothed, multidec-
adally varying, platform. The high-frequency fluctuation is 
mostly associated with ENSO, as its associated spatial pat-
tern is the cold-tongue pattern in the equatorial Pacific, seen 
in Fig. 1d below 1a. The spatial pattern associated with the 
low-frequency (period longer than decadal) part of that time 
series is shown in Fig. 1c. The same procedure was previ-
ously used by Wu et al. (2011) to find the spatial SST pattern 
of the multidecadal mode with an average period of 65 years, 
except that here we broaden the frequency range to include 
the decadal and interdecadal in addition to multidecadal 
variability. The low-frequency SST pattern is dominated by 
the interhemispheric dipole in the Atlantic basin, similar to 
the AMO, being warm in the North Atlantic but cool in the 
South Atlantic and vice versa. The variance in the eastern 
tropical Pacific is much weaker at 0.32, about 1/6 that of 
the North Atlantic at 1.95. Wu et al. (2011) showed that 
the 65-year mode’s center of action is in the Atlantic, with 
only a weak extension in the Pacific; our result agrees with 
that and additionally shows that variability in all time scales 
longer than decadal, and not just the 65-year mode, has no 
center of action in the Pacific. This result concerns only the 
source that causes the variability in the global-mean sur-
face temperature. It does not imply that the climate modes 
themselves do not have a center of action in the Pacific. In 
fact the PDO has twice the variance of the AMO (see later).

This result is controversial given the above reviewed pub-
lications on the role of PDO and IPO on the GST variations. 
In the rest of this paper, we will study the major modes 
of climate variability and how they affect the global mean. 
The approach is from the opposite direction as that used 
in Fig. 1: We start with the full space–time information of 
the two dimension plus time SST field, and decompose it 
into identifiable EOFs and their PCs using the method of 
pairwise rotated principal component analysis (Chen et al. 
2017) (hereafter CWT). After the modes are identified based 
on the space–time information available, we then take the 
global average of the EOFs to yield the components of the 
global-mean SST (GSST). The additional spatial informa-
tion before the global averaging allows us to understand why 
the influence from the Pacific on the GSST is mostly at the 
high frequencies, and why the Pacific’s decadal and inter-
decadal variability do not contribute much to GSST. Land-
plus-ocean surface temperature is then used to obtain the 
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spatial patterns of the corresponding modes of variability. 
These are then globally averaged to yield their contributions 
to the GST. This procedure helps us understand why the tel-
econnection patterns from the Pacific Ocean to land are not 
effective contributors to the global mean surface temperature 
at the low frequencies.

The use of rotated PCs in the decomposition of SST 
allows easier interpretation of the results. Our novel pro-
cedure of averaging the space–time decomposition from 
rotated EOF analysis is surprisingly simple. Because it has 
not been used previously to our knowledge as an orthogonal 
decomposition method for time series we provide here a 
simple mathematical derivation. It is applicable to any time 
series or indices based on global or regional SST. The appli-
cation to GSST through area averaging is straightforward, 
and retains the orthogonality of the PCs. So the variance of 
each mode adds. The application to IPO involves low-pass 

filtering in time; the filtered PCs are no longer orthogonal. 
This creates mode mixing. Mode mixing provides the crucial 
information in answering the question: what is the IPO?

2 � EOF decomposition of SST

The dataset used for constructing the oceans’ climate modes 
is NOAA’s ERSSTv.3b SST (Smith et al. 2008), with a 
3-month running mean done in the preprocessing. Sensitiv-
ity of the rotated EOF analysis to a different dataset, namely 
HadISST, was discussed in CWT. Except for a weaker AMO 
amplitude in HadISST, most of the results remain similar in 
the two datasets.

The SST data is expressed in an orthogonal expansion of 
PCs in the form: 

Fig. 1   Decomposition of the global mean temperature. One hun-
dred ensemble members in the HadCRUT4.5 dataset, sampling sys-
tematic components of observational uncertainty, are shown in light 
grey. Their ensemble mean is in black. a Decomposition of each of 
the ensemble members of the HadCRUT4.5 global mean surface 
(land + ocean) temperature into its high-frequency (shorter than dec-
adal; in green) and low-frequency (longer than decadal, in red) com-
ponents. The secular trend is indicated with the brown line. The blue 
lines, consisting of the red and the brown lines, are seen as a good 
smoothed version of the original time series. The darker color line 
denotes the ensemble mean of the light color lines. The method used 
in the decomposition is ensemble empirical mode decomposition (Wu 
and Huang 2009) (EEMD), which has the advantage that it is lossless 
(the three components add up to the original time series perfectly) 

and that the high and low frequency components are constructed to 
be orthogonal (for all practical purposes in the implementation). The 
high-frequency component can also be seen as the difference between 
the original data and the smoothed version. Bottom panels: Spatial 
patterns obtained by regressing the global land + ocean surface tem-
perature for the period 1910–2014 onto the secular trend (brown 
curve) (b); onto the low-frequency component (the red curve) (c); and 
the high-frequency component (the green curve) (d), after the low 
and high frequency time series are first normalized to unit standard 
deviation, so that the color shows the amplitude in degrees C. The left 
color scale is for the secular trend, while the right color scale is for 
the low and high frequency oscillations. The climatology is based on 
the 1961–1990 mean
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Both PCs and EOFs are orthogonal. The PCs are in addi-
tion normalized to have unit standard deviation.

We first show the conventional EOF decomposition of 
the SST in Fig. 2. This figure can be found in many previ-
ous publications, including CWT. It is included here for the 
purpose of contrasting with the rotated EOFs to be presented 
in Fig. 3. EOF1 is dominated by the global warming trend. 
Its time series, PC1, is almost indistinguishable from GSST 
(correlation coefficient r = 0.98). EOF2 contains ENSO in 
the tropical Pacific and is commonly referred to “ENSO-
like” (Zhang et al. 1997). It has the shape of an equatorial 
cold tongue in the Pacific, and its PC is highly correlated 
(r = 0.86) with the ENSO index [the Cold Tongue Index 

(1)SST(�, t) =

∞
∑

j=1

EOFj(�)PCj(t)
(CTI)] (Zhang et al. 1997). EOF3 has a spatial pattern with 
warming in the North Atlantic and cooling in the South 
Atlantic. Its PC time series is dominated by multidecadal 
scale variability and highly correlated with the AMO index 
(Enfield et al. 2001). The two time series are almost per-
fectly correlated at r = 0.98 if both are smoothed the same 
way. Without smoothing the PC, the correlation is still quite 
high (r = 0.82).

As pointed out by Chen and Wallace (2016), and seen 
in our Fig. 2., EOF2, the “ENSO-like” mode, is not a pure 
ENSO mode; it has the “bullet-like” feature of the PDO in 
the North Pacific mixed with the tropical ENSO pattern; the 
decadal variability of the PDO contributes to the mode mix-
ing of PC2 in its frequency composition. The same North 
Pacific’s feature is also found in EOF4. PC4’s decadal fre-
quencies are correlated with those of PC2, while its inter-
annual frequencies are anti-correlated in such a way as to 

Fig. 2   Conventional EOF expansion of SST. (From top to bottom) 
The first four EOF modes (the left column) and their corresponding 
PC time series (black curves on the right column with the scale indi-
cated on the right) obtained from three-month running mean SST of 
1910–2015 with the seasonal cycle removed. The percentage of vari-
ance explained by each mode is displayed in the lower-left corner of 
each EOF panel. Over a thousand EOFs are used in calculating the 
percentage of variance. The PC time series from top to bottom are 

superimposed on the global mean SST anomaly, the cold tongue 
index (CTI) (Barnett 1984; Deser and Wallace 1987, 1990; Folland 
and Parker 1995; Zhang et al. 1997) and the AMO index of Enfield 
et al. (2001), respectively. The three indices are shown in red with the 
scale indicated on the left. The correlation coefficient between each 
PC and its corresponding index time series is indicated by � inside 
each panel. All the three �’s are statistically significant at over 95% 
confidence level
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yield a zero overall correlation between PC2 and PC4, as 
required by the orthogonality constraint of the EOF analysis. 
These frequency bands can be largely decoupled if we sim-
ply add and subtract the two PCs (and divide by the square 
root of 2 to maintain the same normalization of unit standard 
deviation), as was done previously by Chen and Wallace 
(2016) for the case of pan-Pacific SST. The addition and 
subtraction are equivalent to 45- degree rotation of the pair 
of PCs. A detailed justification for the choice of the general 
rotation angle between a pair of PCs can be found in CWT, 
based on the minimization of mode mixing in the frequency 
bands between the pair. The optimal angle turns out to be 43 
degrees. The spatial patterns from 43- and 45-degree rota-
tions are visually indistinguishable. The pairwise rotated 
PCs (prPCs) are orthogonal and normalized, but the rotated 
EOFs are not necessarily orthogonal, which is an advantage 
because the physical modes themselves may not be spatially 
orthogonal. prPC1 contains all the linear trends: the other 
PCs’ trends have been transferred to it, following the con-
vention of CWT and Huang et al. (1998) that the dynamical 
modes are oscillations with zero trend. The trend transfer 
formula can be found in CWT.

The result is shown in Fig. 3. The rotated EOF2 is now 
the canonical ENSO, or variously called the Eastern Pacific 
ENSO or the ENSO-cycle mode. It has a large variance in 
the eastern coast of the Pacific Ocean and is more focused 
in the equatorial Pacific, and is “devoid of extratropical 
structure” (CWT). It is here referred to simply as the ENSO 

mode. Its PC is dominated by the 2–7 year interannual fre-
quencies, and highly correlated with the Cold-Tongue Index 
defined in Deser and Wallace (1987) (r = 0.83). Its global 
EOF spatial pattern is almost the same as the spatial pattern 
obtained by regressing global SST field onto this cold tongue 
regional mean index, shown in Fig. 3f, although the latter 
has slightly more structure in the North Pacific. prPC3 is 
virtually identical to the time series of the regionally defined 
PDO of Mantua et al. (1997) based on the leading PC of the 
SST north of 20N in the Pacific (r = 0.97 in 5-month run-
ning mean data). Its global EOF spatial pattern is close to 
the PDO’s spatial regression pattern in Fig. 3i, except that 
the variability of our rotated global EOF3 along the equa-
tor is stronger in the central Pacific and tapers off to the 
eastern Pacific compared to the regressed one. The fourth 
mode closely resembles the Enfield et al. (2001)’s version of 
the AMO, which is defined as the ten-year running mean of 
linearly detrended Atlantic SST north of the equator.

Although the leading modes of variability obtained 
through our rotated PC analysis resemble the spatial pat-
terns obtained by regressing global SST field onto the 
regionally defined climate indices, as shown in the middle 
and right columns of Fig. 3, the latter procedure cannot be 
used to reconstruct the SST field: first, these ad hoc indices 
are not necessarily orthogonal, and linear regression onto 
non-orthogonal indices may be problematic. Secondly the 
regressed spatial patterns are not ordered according to the 
global variance explained, and so we do not know if these 

Fig. 3   Rotated SST EOFs and prPCs. Left column, the leading four 
rotated EOFs. Middle column: the rotated PCs in blue, and indices 
in red. Right column: the regionally defined indices and their global 

spatial patterns obtained through regression upon those indices. The 
regions used to define these indices are boxed
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are the leading modes or if there are other missing modes in 
between them. Mathematically, the EOFs and their PCs can 
be used to reconstruct the SST field in the form of Eq. (1). 
The rotation of the PCs does not change the representation 
of the SST field expressed in Eq. (1) (as long as the PCs are 
still orthogonal), but gives it a better physical interpretation 
as its rotated PCs have largely distinct frequency ranges, and 
the EOFs, though global, have the familiar spatial patterns 
from previous regional definitions. We shall call the first 
EOF the global warming TREND (TR) mode, the second 
the ENSO mode, the third the PDO and the fourth the AMO.

Current understanding of the physical origin of the PDO 
was reviewed by Newman et al. (2016). In a paper entitled 
“ENSO-forced variability of the Pacific decadal oscil-
lation”, Newman et al. (2003) showed that variability on 
both interannual and decadal time scales of the PDO can be 
reproduced when tropical ENSO was introduced as a forc-
ing term in an AR1 model. The “forecast” of the PDO using 
the simple model has considerably more skill than a simple 
AR1 model with only white noise forcing. The noise forcing 
represents noisy atmosphere-SST interactions in the extra-
tropics. The AR1 mechanism is meant to incorporate the 
“reemergence” of North Pacific SST in subsequent winters 
of previous winter’s ENSO forcing.

Newman et al. (2003)’s model is actually linear: 

PDO(n) = a ⋅ PDO(n − 1) + b ⋅ F(n) + w(n),

where the last term is white-noise forcing. We use the same 
model parameters, a and b as in Newman et al. (2003. The 
“ENSO” forcing (denoted by F here) that was used in New-
man et al. (2003) is the leading PC of the tropical SST in a 
conventional EOF expansion. Its PC is similar to our ENSO-
like mode in Fig. 2f. We can reexpress its PC into the pan 
Pacific modes. It is found to be: 

In Fig. 4, we repeat the calculation of Newman et al. 
(2003) but in addition show the response of the model to 
each of the forcing components separately, and the sum of 
the two. The spatial pattern of the response is strikingly 
close to the forcing. This shows that the reason the extra-
tropical PDO can be obtained through this AR1 model 
when only the “tropical ENSO” needs to prescribed as 
forcing is because there is a PDO contained in the forcing 
used in the form of F2. When it is absent, and the forcing 
contains only ENSO, there is no extratropical PDO pro-
duced by this model. So the independence of ENSO and 
PDO modes, as we defined them through rotated EOFs, 
is likely more than a mathematical orthogonality result.

The relationship between AMO and PDO has been dis-
cussed in CWT. The AMO mode obtained from global 
SST has a center of action in the North Atlantic and a very 
weak extension in the North Pacific. On the other hand, 
PDO has no extension into the Atlantic. These two modes 

F = F1 + F2, with F1 = 0.8 ⋅ ENSO, and F2 = 0.6 ⋅ PDO.

Fig. 4   Response of Newman’s model to the two components of 
forcing used. Left column: the spatial pattern of the forcing used for 
Newman et  al’s (2003) model. (From top to bottom) The “ENSO” 
forcing that was the leading EOF/PC of tropical Pacific SST used in 
Newman et al. (2003), the forcing F = F1 + F2, the forcing F1, and the 

forcing F2. Middle column: the spatial pattern of different responses 
to the forcing in the left column based on Newman’s model. Right 
column: the responses to the forcing F (blue), F1 (green), and F2 
(cyan), and the summation of the responses to F1 and F2 (red), respec-
tively
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are mathematically uncorrelated. To investigate the physi-
cal connection between the two modes, CWT performed 
separate EOF analysis of the Atlantic basin and of the 
Pacific basin and found that the Atlantic pattern leads the 
weak Pacific signature by 15–20 years. The regression map 
of the global SST onto the mode in the Pacific basin has 
no notable signature in the Atlantic.

3 � Components of global‑mean SST

Equation (1) is rewritten as: 

We take the global average, denoted by an overhead 
bar, of both sides of Eq. (2): 

Figure 4 shows the first four components of the global 
mean SST as given by Eq. (3); these four components 
comprise almost the entire GSST, as the remaining terms 
in the sum is negligibly small. (The right-hand side of 
Eq. (3) consists of orthogonal time series and so their var-
iances add.) The first mode is the trend mode, due likely 
to global warming, but contains also artifacts of SST 
measurement after the end of the World War II (Thomp-
son et al. 2009) and short term global cooling after major 
volcanic eruptions. The trend is about 0.08 °C per decade 
and is consistent with what was previously found using 
multiple regressions (Zhou and Tung 2013). It is seen that 
ENSO contributes to the global mean on the interannual 
scale and PDO mostly on the decadal scales, while the 
AMO has a clear multidecadal contribution. The AMO 
contributes about 0.25 °C to the global-mean SST (with 
a “trend” also of approximately 0.08 °C per decade) from 
trough to peak, which explains why when AMO was in 
its negative phase the observed global warming rate was 
noticeably smaller. ENSO’s contribution to the global 
mean is only in the interannual range. PDO’s contribu-
tion to the global mean is surprisingly small, considering 
that Pacific has a larger surface area than the Atlantic and 
the PDO has twice as much variance as the AMO before 
global averaging. The reason for its smaller global aver-
age is the PDO’s spatial pattern, with its compensating 
warm and cold regions.

If conventional EOFs are used, the first PC is almost 
the same as GSST (see Fig. 2), already containing con-
tributions of the dynamical modes to the GSST. Con-
sequently, no information on its composition can be 

(2)

SST(�, t) = TR(�) ⋅ prPC
1
(t) + ENSO(�) ⋅ prPC

2
(t)

+ PDO(�) ⋅ prPC
3
(t) + AMO(�) ⋅ prPC

4
(t) +⋯

(3)

SST = TR ⋅ prPC
1
(t) + ENSO ⋅ prPC

2
(t) + PDO ⋅ prPC

3
(t)

+ AMO ⋅ prPC
4
(t) +⋯

revealed since a PC cannot be further decomposed, except 
with the use of EMD, and this has been done and shown 
in Fig. 1.

4 � Components of GST

Figure 5 shows that PDO has a much smaller direct contribu-
tion to the global mean SST variation compared to the AMO. 
However, it is known that tropical and Northern Pacific can 
generate teleconnections to the extratropics and over land. 
In particular, PDO has a close association with the atmos-
pheric Pacific/North American (PNA) pattern, which exerts 
a strong influence on the surface air temperature (SAT) over 
North America. So it is possible that the indirect effect of the 
PDO on the global-mean land-plus-ocean surface tempera-
ture (GST) is not small. On the other hand, the PNA patterns 
have alternating warm and cold centers, and they may not 
be effective in forcing the global mean. We investigate this 
effect in Fig. 6 using HadCRUT4.5 land-plus-ocean surface 
temperature data.

Figure 6 shows the spatial structure obtained by regress-
ing the land + ocean surface temperature onto each of the 
prPCs: TR, ENSO, PDO and AMO. The PDO mode does 
have a significant influence on the surface temperature of 
the North America continent. However, the eastern half 
of the content has a different polarity as the western half. 
This compensating warm-cold structure greatly reduces the 
global impact of the PDO mode. AMO, on the other hand, 
has teleconnections of the same sign over North America. 
Since the PCs have unit variance, the variance of the modes 
can be obtained from the EOFs alone. Taking the global 
mean of the spatial patterns yields, for each of the modes: 
TR (0.27), ENSO (0.04), PDO (0.01) and AMO (0.10), in 
degrees C. Thus the contribution to GST by PDO is only 
1/10 that by AMO.

No lag is used in calculating the spatial patterns associ-
ated with the PDO-PNA teleconnections, and this is prob-
ably not needed, because the mechanism of the PNA tele-
connection, by Rossby wave propagation (Horel and Wallace 
1981; Hosking and Karoly 1981), should take less than a 
season. Since we use seasonal mean data, our result should 
include effects of this slight lag.

The components of GST are shown in Fig. 7. They are 
calculated using a formula similar to Eq. (3), but replacing 
SST by the land + ocean surface temperature, and using the 
global mean of the spatial patterns given above. Notice that 
the sum of the first four modes is a close approximation of 
the GST, meaning that the leading PCs calculated previously 
from EOF analysis of the SST field are also the leading ones 
for the land-plus-ocean surface temperature field. The slight 
differences occur during periods of bad (such as after WWII) 
and sparse (before 1930) data. The closeness of the GST 
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and the sum of the first four modes obtained without using 
any lags shows that the lags are probably not significant in 
influencing GST. The Atlantic is the main contribution to 
the multidecadal variation of the GST through AMO. The 
Pacific contributes only at interannual time scales through 
ENSO.

5 � The IPO

In an orthogonal EOF expansion of the SST, IPO does not 
appear as one of the EOFs. Therefore the discussion of the 
variations of SST in the previous sections is complete without 
delving into the issue of what the IPO is. Nevertheless, due to 
the frequent attributions of the variations of the GSST/GST to 
an interdecadal variability referred to as the IPO, it would be 
useful to reconcile the above-obtained results by calculating 
the contribution to the global mean by the IPO.

The IPO is defined as the second EOF (after the global 
warming mode) of decadally low-pass filtered SST according 
to Parker et al. (2007) and Henley et al. (2015). This appears 
to be the currently adopted definition, although IPO originally 
was defined by Folland et al. (1999) and Power et al. (1999) as 
the third EOF of 13.3-year low-pass SST.

The IPO is not a distinct climate mode, but a combina-
tion of the modes discussed above. The mixing of the existing 
modes is caused by the low-pass filtering, since the filtered 
PCs are not orthogonal. We apply a N-year Lanczos low-pass 
filter, denoted by […] to both sides of Eq. (1) or (2). The deri-
vation below is the same whether the PCs are rotated or not: 

The filtered PCs are no longer orthogonal. Since filtering 
also reduces their variances, they are also no longer normal-
ized. For presentation purpose, we renormalize the filtered 

(4)[SST] =

∞
∑

j=1

EOFj(�)
[

PCj(t)
]

.

Fig. 5   The global mean SST. 
Shown are the four orthogonal 
components of the global-
mean SST of unfiltered data 
as a function of time. Each 
curve has been offset vertically 
by 0.2. From top to bottom, 
GSST and the sum of the 
first 4 components, showing 
that the latter is a very good 
approximation of the former, 
TR ⋅ prPC

1
(t),ENSO ⋅ prPC

2
(t),

PDO ⋅ prPC3(t) and AMO ⋅ prPC4(t)
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PCs by their respective standard deviation, and the normali-
zation constant is absorbed into the EOFs.

The low-pass filtered data on the left-hand side is 
expanded in a different orthogonal EOF expansion. We 
denote its (conventional) EOF by E and its PC by P. Both 
E and P are orthogonal. P is in addition normalized to unit 
standard deviation: 

The IPO may either appear as P2, or P3.
The PCs of the filtered SST can be obtained by taking the 

spatial inner product <.> of Em on both sides of Eqs. (4) and 
(5), recalling that the E’s are orthogonal, as: 

We can also obtain the component of the EOFs of filtered 
SST. Taking the inner product of Pm on both sides of Eqs. 
(4) and (5), and recalling that the P’s are orthogonal and has 
unit variance, we find: 

Globally averaging both sides of Eq. (7) then yields the 
global-mean components of the IPO for either m = 2 or 3.

Figure 8a shows the spatial patterns of the second EOFs 
of the 13-year low-pass filtered SST. The largest variance 
is in the North Atlantic, in a form similar to the AMO. Its 
PC, shown in Fig. 8c, is mainly multidecadal. On the other 
hand the spatial pattern for lower thresholds, such as N = 4 
or 5, yields a more Pacific “ENSO-like” feature (not shown), 
but the added high frequencies by this wider filter are not 
normally included in the definition of the IPO. Figure 8b, d 
shows the spatial pattern and PC of the third EOF of the low-
pass filtered SST. It has two centers of action, one located 
in the North Pacific and one in the North Atlantic, with the 
stronger Pacific center resembling that from the PDO.

In Fig. 9a, we decompose the IPO index, defined as the 
second PC of the 13-year low-pass filtered SST, into its com-
ponents. Only the first four components are shown as these 
add up to the IPO index closely. The ENSO component is 
almost zero, as the interannual frequencies of this compo-
nent are mostly removed by the low-pass filter. The passed 
frequencies in Fig. 9a are dominated by that of the AMO in 
the multidecadal range. So the IPO, if defined as the second 
PC, is actually mostly the AMO, when the decadal low-pass 
filtered is used in its definition. Figure 9b shows the results 
if the IPO is defined as the third PC of the 13-year low-
passed filtered SST. Its components consist of a different 
proportions of ENSO, PDO and AMO, with a larger PDO 
component and smaller AMO component compared to the 
second PC. The ENSO component is again much reduced by 

(5)[SST(�,t)] =

∞
∑

i=1

Ei(�)Pi(t).

(6)Pm(t) =

∞
∑

j=1

�j

[

PCj(t)
]

𝛼j =
< EOFj(�) ⋅ Em(�) >

< Em(�) ⋅ Em(�) >
.

(7)Em =

∞
∑

j=1

EOFj⋅ <

[

PCj

]

⋅ Pm >.

Fig. 6   Spatial land + ocean surface temperature patterns associ-
ated the four leading climate modes of variability: TR (a), ENSO 
(b), PDO (c) and AMO (d). Gridpoints where at least 1/3 of the data 
length for the period 1910–2015 are missing are left blank
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Fig. 7   The global-mean surface 
land-plus-ocean temperature. 
Similar to Fig. 5, but for the 
land-plus-ocean surface tem-
perature

Fig. 8   EOF2 and PC2 of the 13-year filtered SST (top panels). EOF3 and PC3 (bottom panels)
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decadal low-pass filtering, while the global mean of the PDO 
is almost zero. So the global mean of this IPO (third EOF/
PC of decadally filtered SST) is almost zero (magnitudes 
will be given later).

The global mean of E2 is 0.018 K, while that of E3 is 
0.0032 K, a factor of 6 smaller. This result is consistent with 
the different proportions of AMO vs PDO in the two modes. 
The surprising finding here is that contributions by E2 and 
E3 to the GSST are both so small. It turns out, since the IPO 
is defined using a conventional EOF analysis, the variations 
in the global mean is actually mostly in the first EOF/PC, 
similar to the situation of the conventional EOF decomposi-
tion of unfiltered data mentioned previously in Sect. 3. The 
conclusion is that, whether it is defined as the second or third 
PC of the low-pass filtered SST, the contribution of the IPO 
to the GSST is negligible.

6 � The TPI

As an alternative to using EOF analysis of the low-passed 
SST to define the IPO, Henley et al. (2015) proposed using 

the difference of SSTs in three regions in the Pacific to 
define an IPO Tripole Index (TPI): 

The three regions are: T2 the central and eastern equato-
rial Pacific (10°S–10°N, 170°E–90°W), T1 the Northwest 
Pacific (25°N–45°N, 140°E–145°W), and T3 the Southwest 
Pacific (50°S–15°S, 150°E–160°W). The index is filtered 
using a 13-year low-pass filter to mimic the IPO index. The 
regressed spatial pattern of the low-passed TPI is shown in 
Fig. 10a, which is similar to that in Henley et al. (2017), 
and is close to, but not the same as the “ENSO-like” EOF 
in Fig. 2. The pattern is Pacific dominated, but compensat-
ing. The unfiltered TPI index (Henley et al. 2017) consists 
mainly of ENSO and the PDO (not shown). The low-pass fil-
tering greatly reduces the ENSO component, leaving mostly 
the PDO, which has an almost zero global mean. The global 
mean of TPI is shown in Fig. 10c in red, while the GSST is 
shown in black. The TPI explains very little, about 0.05 °C, 
of the GSST variations about the trend. Figure 10d shows 
the global mean of the global surface temperature regressed 
onto the TPI index. It contributes even less to the GST (than 
to GSST), for the reason already discussed in Sect. 4.

TPI = T2 − 0.5
(

T1 + T3
)

.

Fig. 9   Decomposition of the second EOF of 13-year low-pass filtered SST into its components, as a function of time (left panel), and similarly 
for the third EOF of the low-pass filtered SST(right panel)
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7 � Conclusion and discussion

In the presence of monotonically increasing atmospheric 
concentration of greenhouse gases, the part of surface tem-
perature that is the forced response should be generally 
increasing. The observed variation about this secular trend 
can be explained by the contribution of internal (unforced) 
variability or by time-varying aerosol forcing. Models have 
the ability to separate the forced from the unforced vari-
ability, with the former given by the ensemble mean. Some 
authors adopted a hybrid model-observational analysis by 
subtracting from the observed GST the modeled ensemble 
mean (Dai et al. 2015; Kosaka and Xie 2016; Smith et al. 
2016; Dong and McPhaden 2017). This approach requires 
an assumption that the models can simulate the observed 
internal variability correctly. Since the present work is 
empirical, it does not definitively distinguish between the 
forced and unforced response. Another caveat is that our 
method includes only the contribution of the global-mean 
surface temperature by the direct (SST) and secondary (via 
teleconnection) of the effect of SST-based climate modes but 
does not include the possible other more complicated inter-
mediate steps. Nevertheless it is hoped that the space–time 
information provided by our study can shed more light on 
the climate modes in different time scale ranges and on their 
role in affecting the global mean surface temperature.

It has been proposed that ENSO, PDO, IPO and AMO 
can contribute to the variations in the global mean surface 
temperature. Our result is shown in Figs. 5 and 7:

1.	 In addition to an increasing global warming mode (a 
positive trend since 1910), the multidecadal AMO mode 

with its center of action in the Atlantic contributes the 
most to the variation in the global mean SST and global 
mean land-plus-ocean surface temperature. Its variation 
from trough to peak is comparable to the centennial lin-
ear trend of GST.

2.	 ENSO’s contribution is in the interannual time scale of 
2–7 years.

3.	 PDO’s contribution to the global mean surface tempera-
ture is small, about 1/10 that of the AMO.

4.	 The IPO is not an independent mode, but is a combina-
tion of AMO and PDO mixed together by the low-pass 
filter. Its contribution to the global-mean SST is given 
mostly by its AMO component. In any case the IPO, 
as defined by conventional EOF analysis, contributes 
very little to the global mean, whether it is taken as the 
second or third EOF of the low-pass filtered data. This 
is a problem of its definition using conventional EOF 
decomposition, not physics.

5.	 A better definition of a Pacific interdecadal variability 
is the IPO TPI index. This index involves only mean 
Pacific SST in three regions. Its main components are 
ENSO and PDO. When decadally filtered, the ENSO 
contribution is removed and so the TPI measures mostly 
the PDO. Its global mean is nearly zero.

How do the above listed results reconcile with the pre-
vailing view that it is the IPO that causes the slowdown in 
global mean surface temperature during 1998–2012, called 
the “hiatus”? Some of the evidence of the role of IPO was 
based on the time series of the global mean surface tempera-
ture variation and that of the IPO being in phase. As we have 
shown here, the contribution of the IPO to the global mean 

Fig. 10   The Tripole Index and its global mean SST. a The global 
SST regressed onto the 13-year low pass filtered TPI index. b The 
global surface temperature regressed onto the 13-year low pass fil-
tered TPI index. The contribution of the TPI to GSST is obtained by 

multiplying the global mean of the regressed SST spatial pattern by 
the TPI time series in (c). In (d) the global mean contribution of TPI 
to GST is obtained by multiplying the global mean of the regressed 
surface (land + ocean) temperature by the TPI time series
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is mostly by the AMO component contained in the IPO (see 
Fig. 9 and conclusion #4 above). In this regard, the IPO is 
“Pacific” in name only. There has been in recent decades a 
tendency of Pacific trade winds intensifying and the SST 
tending to a La Nina state of cold eastern equatorial Pacific 
(England et al. 2014). However, as the trade winds blow the 
warm SST westward, there is compensating warm SST in the 
western Pacific. When the SST is averaged over the Pacific 
there is no net cooling trend in the tropical Pacific. Drijf-
hout et al. (2014) in a model setup specified both surface air 
temperature (SAT) and SST in the eastern Tropical Pacific 
from observation, and found “colder eastern tropical Pacific 
SSTs stand out, but the increase in heat uptake in the area 
is less prominent, confirmed by heat flux estimates”. Larger 
heat uptake increase was found instead in the Atlantic and 
the Southern Ocean. When a cold SST from observation was 
specified in the eastern equatorial Pacific by other authors in 
a model that has a too-warm SAT, an anomalous heat uptake 
occurs in the eastern Pacific in the model, where there is an 
artificial large difference between the model SAT and the 
prescribed SST, giving the impression that this region of the 
Pacific is the sink responsible for the global SAT slowdown.
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