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Abstract
We used the double-agar layer method to isolate a novel Marinobacter marina bacteriophage, B23, from the surface water 
sample of the Bohai sea of China. There is some work to better understand the phage. The result of transmission electron 
microscopy revealed that B23 belongs to the family Siphoviridae with a head of 80 nm in diameter and a tail of 230 nm. 
Microbiological characterization evidenced that phage B23 is stable at the temperatures from − 25 to 60 °C, and showed 
vigorous vitality at pH between 4.0 and 12.0. One-step growth experiment showed that it had a longer latent period and higher 
lysis efficiency. Furthermore, the complete genome of B23 was sequenced and analyzed, which consists of a 35132 bp DNA 
with a G + C content of 59.8% and 50 putative open reading frames. The genome was divided into five parts, consisting of 
DNA replication and regulation, phage packaging, phage structure, host lysis and hypothetical protein.

Introduction

Ocean is the cradle of life, viruses are the most abundant and 
genetically diverse life forms in the ocean, typically there 
are 106–109 VLPs/ml, place significant predation pressure 
on their hosts. They play a very important role in marine 
ecosystem. Marine viruses influence many biogeochemical 
and ecological process, they are the largest cycle in biogeo-
chemical cycle [1, 2]. Viruses maybe the major vector for 
gene transfer in the ocean, they mediated transfers occur up 
to 1015 times per second [3, 4]. Not only are viruses abun-
dant in oceans but, as is becoming clear, they also harbor 
enormous genetic and biological diversity. Of the large num-
ber, more than 50% coding sequences (CDSs) haven’t been 
annotated [5].

The genus Marinobacter was proposed by Gauthier et al. 
with the description of Marinobacter hydrocarbonoclasti-
cus as the type species [6]. Marinobacter colonize a wide 
variety of marine ecosystems around the world ranging from 
psychrophilic to thermophilic environments with a high tol-
erance to salinity and pH [7]. In anoxic conditions, species 
of the genus Marinobacter were the dominant component 
in marine polycyclic aromatic hydrocarbon(PAH)-degrading 
communities [8]. Species of the genus Marinobacter might 
enhance the biodegradation of crude oil through the biosyn-
thesis of glycolipids [9]. The 16S rRNA gene sequence of 
the bacterial host showed 99% homology to Marinobacter 
salarius strain R9SW1 [10]. Marine microorganisms, such 
as Marinobacter, derive energy and carbon from the degra-
dation of petroleum hydrocarbons and drive the bioreme-
diation process during anthropogenic oil spills. Such as the 
Deepwater Horizon (DWH) spill, Marinobacter salarius 
R9SW1 play an important role in degradation of n-hexade-
cane (HEX) [11].

Marinobacter has high stability in the presence of high 
salt concentration and low temperature, conditions charac-
terizing the marine environment, the capability to disperse 
crude oil and the low ecotoxicity makes them important in 
combatting marine oil spills [12]. Some experimental results 
support the concept of a phage-driven microbial loop in the 
bioremediation of the marine oil spills [13]. Application of 
this concept in bioremediation of contaminated water has 
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the potential to increase the efficiency of processes [14]. So 
the study of Marinobacter phage is significant. To better 
understand Marinobacter phage diversity and phage-host 
infection mechanisms in the marine environment, we iso-
lated and characterized the Marinobacter phage B23 from 
the Bohai Sea of China, and reported the complete sequence 
of the genome of bacteriophage B23 as well as a preliminary 
analysis of the functional features of the genes.

Materials and Methods

Sampling

The surface seawater sample was collected from a depth of 
0.5 m in the Bohai Sea of China, and stored at 4 °C after 
collection [15, 16].

Bacterial Strains

We used the agar overlay method to isolate the host bacte-
ria strain Marinobacter. The molecular identification of the 
isolate was obtained via 16S rRNA gene sequence analy-
sis, then researched the homology of the 16S rRNA gene 
sequence by BLAST search [17]. The host strain was con-
served in liquid Zobell medium [18].

Phage Isolation

The seawater sample was filtered through 0.22 m syringe 
filter membrane, then the phage was detected and isolated 
by the double-agar-layer method: 200 µl of seawater sample 
filtrate was transferred into a cryopreservation tube, 200 µl 
of the host suspension was added and mixed well, then add-
ing 4.5 ml of the semi-solid medium, and poured over the 
surface of solid medium. Plaques were observed over the 
surface of the agar plate after 24 h. Following at least three 
packing for each plaque, and the purified phage was then 
stored in SM buffer at 4 °C until processing [19, 20].

Morphology Study by Transmission Electron 
Microscopy

Morphology of the purified phage was examined at 100 kV 
via transmission electron microscopy (JEOL-1200 EX, 
Japan) to reveal the structural features [21].

One‑Step Growth Curve Assay

The one-step growth curve calculates the latent period and 
burst size. The bacteriophage was added to mid-exponen-
tial phase culture of Marinobacter and allowed to adsorb at 
25 °C for 15 min. Subsequently, the mixture was harvested 

by centrifugation (13,000 r for 30 s) to remove non-absorbed 
phage and then incubated at 25 °C with shaking. During a 
2-h incubation, samples were collected every 8 min, then 
using the double-layer agar method to determine the phage 
titration [22].

PH Sensitivity and Thermal Stability

To investigate the effect of pH on phage infection, phage B23 
were added to SM buffer, and the pH was adjusted from pH 2 
to 13. After incubating for 2 h at 25 °C, the titer of each sur-
viving phage was evaluated using the double-layer method. 
To research phage stability at different temperatures, phage 
B23 was added to SM buffer, and the mixtures were incu-
bated at various temperatures: − 25 °C, 4 °C, 25 °C, 40 °C, 
50 °C, 60 °C, and 70 °C. After 2 h of incubation, the survival 
rate of each treated sample was also determined by double-
layer agar method [23, 24].

Host Range Test

The host range was detected by double-layer agar method: 
mixing with 4.5 ml 2216E broth, 200 µl of bacteria strain 
culture and 200 µl of phage culture, then poured onto a 
2216E agar plate. The plate was incubated at 37 °C over-
night. A clear zone in the plate indicated the presence of 
phage, and positive tests were confirmed by plaque assay 
[25]. Marinobacter algicola DG893 were used to test host 
range.

Genome Sequencing and Bioinformatic Analysis

We used the TIANamp Virus DNA Kit to extract the 
DNA of phage B23. Purified phage B23 genomic DNA 
was sequenced by the IlluminaMiseq 2 × 300 paired-end 
sequence methods. Gaps between remaining contigs were 
closed via the Gap Closer v1.12. ORFs were analyzed using 
RAST (http://rast.nmpdr​.org/). The predicted functions of 
genes and the sequences of the amino acids were scanned 
using BLAST to search against the data set derived from 
all the complete genomes of viruses in NCBI [25, 26]. The 
complete sequence of bacteriophage B23 has been submitted 
to GenBank sequence library and assigned with the acces-
sion number KY939598.

Results

Identification of the Bacterial Strain

The 16S rRNA sequence shows similarity 99% to Marino-
bacter salarius R9SW1 deposited in GenBank.

http://rast.nmpdr.org/
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Morphology of Phage B23

The phage B23 was examined by transmission electron 
microscopy (Fig. 1), and it was classified as a member 
under the family Siphoviridae. It has been shown that the 
B23 has a head of ca. 80 nm in diameter and a tail of ca. 
230 nm.

One‑Step Growth Curve Assay

One-step growth curve shows that phage B23 had a con-
siderably longer latent period of 90 min followed by a 
quick rise in the phage titer, and a burst size of about 19.3 
virions per cell (Fig. 2).

pH and Temperature Stability

The stability of the phage was investigated under differ-
ent thermal and pH conditions based on input and residual 
plaque forming unit (pfu) numbers [27]. Phage B23 showed 
best stability at pH 8, and good stability from pH 4 to 12. 
While, at pH 3, no actively infectious phage was detected. 
The results showed that the phage might be unstable at low 
pH, while the number of plaques was found to increase with 
increasing pH, reaching the highest number at pH 8 (Fig. 3). 
In addition, the results of thermal stability tests show B23 
was relatively heat stable from 4 to 5 °C, and no significant 
loss in phage activity was observed, but decreased sharply 
with increasing temperature at above 60  °C and above 
(Fig. 4).

Host Range of Phage B23

Host range tests showed that phage B23 did not infect other 
bacterial strains in the cross infectivity studies.

Genome Sequencing and Bioinformatic Analysis

The B23 genome has a total length of 35,132 bp and a G + C 
content of 59.8%. The NCBI nucleotide blast analysis of 
the complete genome sequence indicated that B23 shares 

Fig. 1   Transmission electron microscope of PH101, the scale bar 
100 nm

Fig. 2   One-step growth curve of phage B23

Fig. 3   PH stability of phage B23

Fig. 4   Temperature stability of phage B23
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extremely limited similarities with other known phage 
nucleotide sequences, which confirmed its status as a novel 
Marinobacter phage species.

Marinobacter phage genomes were annotated using 
RAST, and manually inspected for alternative start codons. 
50 ORFs were detected and of these, 47 in the positive 
strand and 3 in the negative strand. And the average length 
is 606 bp, the minimum length is 171 bp, and the maximum 
length is 2094 bp. Most of ORFs (52 ORFs) had an ATG 
start codon, but there were also incidences of alternative 
start codons GTG (8 ORFs).

The functions of ORFs were searched by BLASTP. 
Among the 50 potential ORFs identified, 29 ORFs were 
annotated as known genes. In terms of genome organiza-
tion, the predicted ORFs were classified into five groups, 
including DNA replication, regulation and nucleotide 
metabolism, host lysis, phage packaging, phage structure 
and hypothetical protein. The genome map was drawn by 

DNA Master (Fig. 5). The majority of proteins related to 
the DNA replication, regulation and nucleotide metabo-
lism is located in the left arm of the B23, such as DNA-
binding protein (ORF2). In the mid-range and the right 
arm of the genome, the phage structure genes such as 
head subunit protein (ORF32) and tail proteins (ORF38, 
ORF41, ORF44, ORF47, ORF48) are found.

BLASTP analysis showed that the proteins encoded 
by the B23 genome had the closest hits to proteins of 7 
bacteriophages (Table 1). Eight ORFs of phage B23 had 
the highest similarity to predicted ORFs from the Vibrio 
phage martha 12B12 (Table 1). A phylogenetic tree based 
on the amino acid sequence of the terminase large subunit, 
constructed using the neighbor-joining method, showed a 
clustering of phage B23 with Thiobacimonas phage vB 
ThpS-P1, Rhodovulum phage vB RhkS P1 and Pelagibaca 
phage vB PeaS-P1 (Fig. 6). Further conserved protein 
domain analysis of predicted ORFs showed that 26 con-
served domains were detected (Table 2).

Fig. 5   Cycle graph of the signed 
genomes phage B23
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Discussion

In the current study, a Siphoviridae phage, named B23, 
was isolated from water samples of the Bohai Sea. B23 
was able to infect strain Marinobacter in this study and 
formed clear plaques. One-step growth analysis revealed 
that the phage has a long latent period, indicating that 
B23 has high lytic activity and robust propagation. Fur-
ther investigation of its ability to inhibit bacterial growth 
under various conditions, the B23 showed high stability 
to temperatures and pH [28].

BLASTP analysis of the complete genome sequence 
showed 50 ORFs in phage B23. In total, 30 of the 50 pre-
dicted ORFs were not found to have any matches of puta-
tive functions in the BLASTP database. In all of these 
ORFs, 26 conserved domains were detected.

Based on the similarity of its sequence and organization 
to those of other phages to analyze the knowledge about 
phage B23. Structural gene region, the genes encoding 

the structural proteins are located from ORF32 to ORF49. 
ORF32 encodes phage major head subunit gpT, shares 
high levels of amino acid identity with Pseudomonas 
phage LPB1. It is typical for the head protein genes in 
phage genomes to be clustered together and to precede the 
tail protein genes [29]. This suggests that the hypotheti-
cal protein downstream from ORF32 may be involved in 
viral head structural formation despite their products lack-
ing identity to any known bacteriophage structural pro-
teins. The downstream of the phage head morphogenesis-
encoding region is a putative tail morphogenesis region. 
By BLASTP analysis, ORF38, ORF39, ORF41, ORF44, 
ORF47 and ORF48 encode tail protein.

For the phage packaging module of phage B23, composed 
of the small terminase subunit and the large subunit. ORF27 
encodes large terminase subunit and shows highly similar 
to the putative large terminase from the Rhodovulum phage 
vB RhkS P1. Typically, the genes encoding the small ter-
minase are located immediately upstream of those encod-
ing the large terminase subunit and transcribed in the same 
direction, which is consistent with the analysis of BLASTP, 
ORF26 encodes the small terminase subunit of B23 [30].

By the BLASTP analysis, there are only four ORFs about 
the DNA replication, regulation, and nucleotide. ORF2 
encodes DNA-binding protein containing HTH_35 domain, 
and shows homology to DNA-binding protein in Haemo-
philus phage SuMu. ORF3 also encodes DNA-binding pro-
tein. ORF43 encodes DNA circulation protein. Phage lysis 
modules typically consist of lysozyme and holin genes that 
together are responsible for bacterial lysis and release of 
phage progeny [31]. In the B23 genome we could identify 
only the gene of Phage lysin (ORF20), with no ORF display-
ing identity to any known holin protein. But the hypothetical 
protein (ORF19) contain Holin_2–3 domain (pfam13272). It 
suggests that this might be a new holin genes of phages [32].

In this study, we analyzed the morphological properties 
and the genome sequence of the phage B23. Present work 
would provide basic data to further understand the complex 
phage–host interactions and could be used as basic knowl-
edge for future work.

Table 1   Phages with common 
genes as phage B23 by 
BLASTP

Phage name Phage family Genome 
length (bp)

GenBank acces-
sion number

Common 
ORFs with 
B23

Vibrio phage martha 12B12 Myoviridae 33,277 NC_021070.1 8
Escherichia virus Mu 4
 Vibrio phage VBpm10 Unclassified 33,314 JF974302 3
 Pseudomonas phage JBD25 Siphoviridae 39,552 NC_027992 3
 Enterobacteria phage SfV Myoviridae 37,074 NC_003444 2
 Salmonella phage 118970_sal3 Unclassified 77,375 NC_031940 2
 Pseudomonas phage vB_PaeS_PM105 Siphoviridae 39,593 NC_028667 2

Fig. 6   Phylogenetic tree for selected phages constructed from the pro-
tein sequence of their terminase large subunit
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