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Abstract  In order to study the temporal variations of correlations between two time series, a running correlation coefficient (RCC) 
could be used. An RCC is calculated for a given time window, and the window is then moved sequentially through time. The current 
calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient, calculated 
with the data within the time window, which we call the local running correlation coefficient (LRCC). The LRCC is calculated via 
the two anomalies corresponding to the two local means, meanwhile, the local means also vary. It is cleared up that the LRCC re-
flects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying 
means. To address this problem, two unchanged means obtained from all available data are adopted to calculate an RCC, which is 
called the synthetic running correlation coefficient (SRCC). When the anomaly variations are dominant, the two RCCs are similar. 
However, when the variations of the means are dominant, the difference between the two RCCs becomes obvious. The SRCC reflects 
the correlations of both the anomaly variations and the variations of the means. Therefore, the SRCCs from different time points are 
intercomparable. A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the 
global correlation coefficient calculated using all data. The SRCC always meets this criterion, while the LRCC sometimes fails. 
Therefore, the SRCC is better than the LRCC for running correlations. We suggest using the SRCC to calculate the RCCs. 
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1 Introduction 

A correlation coefficient is a quantity that describes the 
degree of correlation of two different physical quantities. 
The correlation coefficient of a linear correlation is called 
the simple correlation coefficient and is also known as the 
Pearson product-moment correlation coefficient (Pearson, 
1896). The Pearson’s correlation coefficient was first in-
troduced by Francis Galton (Galton, 1888), but its well- 
known form for effect sizes was developed and applied 
by Karl Pearson (Pearson, 1938). For two time series, Xk 
and Yk, with data lengths N, the Pearson’s correlation co-
efficient R is commonly represented as follows: 
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where X and Y are means defined by 
 
* Corresponding author. Tel: 0086-532-66782096 

E-mail: jpzhao@ouc.edu.cn; caoyong@ouc.edu.cn 

1 1

1 1
;

N N

k k
k k

X X Y Y
N N 

   .            (2) 

The two variables in Eq. (1) can be centralized by sub-
tracting the respective means as follows: 
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Eq. (1) can be written as follows: 

' '

1

' 2 ' 2

1 1

N

k k
k

N N

k k
k k

X Y
R

X Y



 




 
.             (4) 

For the sake of distinguishing the correlation coeffi-
cients from the RCCs shown below, the correlation coef-
ficients expressed by Eq. (1) and Eq. (4) are called global 
correlation coefficients, and the mean expressed by Eq. (2) 
is called the global mean. 

The global correlation coefficient has a definite geo-
metric meaning. In X-Y space, two fitting straight lines 
can be obtained by 
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;k k k kX aY b Y cX d    .        (5) 

The global correlation coefficient is equal to the cosine 
of the acute angle θ between the two straight lines. The 
smaller the angle θ is, the greater the global correlation 
coefficient becomes (Schmid, 1947). 

Being discontent with the global correlation coefficient, 
some scientists tried to study the temporal variations of 
correlations. Thus, the running correlation coefficient 
(RCC) has become a useful tool for describing the vary-
ing correlations. The RCC is usually calculated via an 
algorithm similar to Eq. (1) by using a subset of the data 
centered at i within the time window n, 
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where n is chosen to be large enough to depress high- 
frequency signals and small enough to express the period 
we are concerned with (Zhao et al., 2006), and iX  and 

iY  are called the local means because they are obtained 
from the data within the time window: 
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By sequentially moving the window through time, the 
varying correlation coefficient with time, Rr(t), is obtained 
and reflects the temporal variations of the correlation 
characteristics. The time series of the RCC is shorter than 
the length of the total data and has dead zones with n 
points at both ends of the data when the time window 
length is n. When an abnormal correlation appears in the 
RCC time series, this value usually indicates a special ev- 

ent that scientists are likely to be interested in. As all the 
means and anomalies in Rr(t) are obtained from the data 
within the time window, we call Rr(t) the local running 
correlation coefficient (LRCC). 

The LRCC expressed by Eq. (6) is widely used to study 
varying correlations between two time series, such as the 
correlation of the sea level pressure of the Nordic Seas to 
the Arctic Oscillation Index (Zhao et al., 2006), the asso-
ciation of the equatorial stratospheric QBO and solar ac-
tivity (Kodera, 1993; Salby et al., 1997; Soukhearev, 1997; 
Elias and Zossi de Artigas, 2003), the connection of the 
oceanic transport with several systems (Varotsou et al., 
2015), the temperature reconstructions for the periods of 
the 16th to 18th centuries (Maurer et al., 2009), the cor-
relations between cloud cover and sea ice concentrations 
(Ji and Zhao, 2015), the inter annual variations of river 
discharge (Chen et al., 2016), etc. 

However, calculating the LRCC using Eq. (6) is still 
questionable: is this system a reasonable method for de-
riving the RCC? In fact, Eq. (6) lacks proof for calculat-
ing the RCC. This study first defines the defect of the 
LRCC and then proposes a new method for calculating 
the RCC. 

2 Two Kinds of Running Correlation  
Coefficients 

The LRCC expressed by Eq. (6) has been the general 
and sole form of an RCC up until now. An example of the 
LRCC of two time series according to Eq. (6) is shown in 
Fig.1: one time series is the spatially averaged solar ra-
diation arriving at the Greenland Sea (Fig.1a), and the 
other is the Arctic Oscillation (AO) Index (Fig.1b). The 
LRCC Rr(t) calculated for the two time series is shown in 
Fig.1c, and is dominated by positive correlations in most 
years, but there is irrelevant or negative correlation in 
some years. 

 

Fig.1 Comparison of the two running correlation coefficients. a), Averaged arriving solar radiation in the Greenland Sea 
(red line) and its local mean (blue line); b), AO index (red line) and its local mean (blue line); c), Rr(t); d), Rs(t). 

However, there is a problem with Rr(t). Not only the ano- malies change with time but the means also change with 
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time (red lines in Figs.1a and 1b). The value Rr(t) reflects 
only the correlation between the anomalies of the two 
time series, but the correlations of the varying local 
means are not considered because these values have been 
subtracted when calculating Rr(t) (see Eq. (6)). Thus, whe- 
ther the LRCC is significant when only the anomaly vari- 
ations are considered remains unclear. 

Here, we give an example to illustrate the problem. Let 
the temperatures of two cities during a summer vary with 
an LRCC, R0(t). Assuming that the temperatures of the 
two cities increased 2℃ and 1℃ within the same time 
window, respectively, the LRCC is still R0(t). This is an 
inevitable result of Eq. (6) since the LRCC is determined 
by the anomalies, not by the varying means. Although the 
two anomalies did not change, the local means did change 
during this period. The varying means usually reflect im-
portant physical processes. In this example, the tempera-
tures of the two cities in the summer rose, indicating the 
emergence of a warm summer. A higher positive correla-
tion coefficient is expected in this situation, but the LRCC 
calculated by Eq. (6) changes little as it cannot reflect the 
actions of varying means. 

The contribution of the varying local means is not neg-
ligible, so an unavoidable problem in calculating the RCC 
lies in how to present the impacts of varying means. This 
problem does not appear when calculating the global cor-
relation coefficients with global means, as the mean has a 
singular value. However, when the RCC is calculated by 
using local means, the varying local means become ex-
plicit and are excluded from the LRCC. The LRCC can-
not fully reflect the changing correlations if the varying 
means are not considered. One key question lies in find-
ing an algorithm that reflects the correlations caused by 
both the varying anomalies and varying local means. 

To present the physical significance of the running 
correlation, unchanged means are adopted to calculate the 
RCC when attempting to model the variations of local 
means. These unchanged means are chosen as the global 
means, as defined by Eq. (2), which are calculated using 
all available data. Another RCC Rs(t) is defined as 
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Here, the Rs(t) for the two sets of data shown in Figs.1a, 
and 1b is shown in Fig.1d and is obviously different from 
the LRCC shown in Fig.1c. The positive correlations are 
greatly improved by removing some high-frequency pulses, 
and only two large negative correlation periods occur. 
These improvements are due to the consideration of vary- 
ing means, as the frequency of the varying mean is lower 
than that of the anomalies. Obviously, the local means are 
not used when calculating the RCC via Eq. (8). A portion 
of the local mean is retained in the new anomaly value 
after subtracting the global mean and is included in the 

calculation of Rs(t). As Rs(t) includes the contribution of 
varying anomalies and varying local means, here this re-
sult is called a synthetic running correlation coefficient 
(SRCC). This method was first used by Zhao and Su 
(2004) to calculate the RCC of two time series and found 
inconsistent time periods and their dynamic mechanisms, 
but the details of the rationality of the SRCC use have not 
been demonstrated. 

In fact, the reason for using the method for global cor-
relation coefficients to calculate the RCC and LRCC has 
not been mathematically demonstrated. The need to derive 
a rational form to obtain the RCC remains. The SRCC then 
becomes a candidate in addition to the LRCC. However, 
the data range for the global mean is the length of the data, 
but the data range of the SRCC is the length of the time 
window as expressed by Eq. (8). We hope to know if Rs(t) 
is a rational correlation coefficient. How is this coeffi-
cient understood mathematically and physically? Here, 
we try to explain the SRCC and explore its physical sig-
nificance. 

To better reflect the differences of the two RCCs, we 
use two functions to simulate the running correlation: 

1 1( ) 1.0 sin(2π / 5.0) ( )A t t a t   ; 

2 2( ) 5.0 sin(2π /12.0) ( )A t t a t   .       (9) 

Taking the time range of 0–700, the means a1(t) and 
a2(t) are set as 
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t t
a t a t

  
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 
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(10) 

The red lines in Figs.2a and 2b are the two functions, 
and the blue lines are their local means. The LRCC and 
SRCC values with 13 time windows are shown in Fig.2c 
and Fig.2d, respectively. 

The two RCCs are very small when the local means are 
equal to zero. When the non-zero local mean appears, the 
response of the LRCC to the changing mean is still small, 
except at the points with shifts of the local means (Fig.2c). 
However, the SRCC becomes large in the presence of 
non-zero local means, reflecting high correlations. Obvi-
ously, compared with Rr(t), Rs(t) can reflect the correla-
tions caused by varying local means, which approaches 
our results concerning the possible relevance. In addition, 
the average of the LRCC is 0.03, and the average value of 
the SRCC is 0.17. Thus, the latter is closer to the global 
correlation coefficient of 0.29. 

Since the local means are non-zero between 300 and 
400, only one-seventh of the data range of the total se-
quences has global means that slightly deviate from zero. 
However, for the non-zero means between 100 and 600 
(Figs.3a, b), the global means will deviate further from 
zero. In this situation, Rr(t) is still high only at the transi-
tion points (Fig.3c), and Rs(t) is high near both ends 
(Fig.3d). The global correlation coefficient is 0.39, the 
average value of Rr(t) is 0.02, and the average value of 
Rs(t) is 0.31. 
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Fig.2 Two kinds of running correlation coefficients with varying means (Example 1). a) and b) show the functions defined 
by Eq. (9) (red line) and their local means (blue lines) with non-zero a1 and a2 during 300≤ t ≤ 400; c), Rr(t); d), Rs(t). 

 

Fig.3 Two kinds of running correlation coefficients with varying means (Example 2). a) and b) show the functions defined 
by Eq. (9) (red line) and their local means (blue lines) with non-zero a1 and a2 during 100≤ t ≤ 600; c), Rr(t); d), Rs(t). 

The Rs(t) of the various conditions can be simulated by 
adjusting the amplitude, period, a1 and a2 in Eq. (9). The 
results show that the contributions of the local means to 
Rs(t) are related to their relative magnitudes. If the values 
of a1 and a2 decrease in Eq. (9), Rs(t) also decreases. The 
local variance is also an important factor. If both ampli-
tudes decrease, the variances will be reduced and Rs(t) 
will increase. No matter how the parameters in Eq. (9) are 
adjusted, the results are similar, i.e., the average of the 
LRCC is small because this value increases only at the 
transition zones, and the average of the SRCC is more 
influenced by changing means. 

3 The Relationship Between Two RCCs 

The examples in Section 2 show the differences be-
tween the LRCC and SRCC as well as the effects of the 
local means and local variances on Rs(t). The examples 
indicate that Rs(t) is better able to reflect the running cor-
relations between the two time series. Rs(t) not only re-
flects the correlation between the varying anomalies but 

also the correlation between the varying means. In this 
section, the relationships between the two RCCs will be 
established.  

The numerator part of Eq. (8) is rewritten as 
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This equation can be further written as follows: 
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The local variances σrx(t) and σry(t) are 
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and the global variances σsx(t) and σsy(t) are 
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Substituting Eqs. (14) and (15) into Eq. (13), we have 
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The relationship between the two RCCs is established 
by Eq. (16), which is related to two factors: one is the 
local variance and the other is the difference between the 
local mean and global mean (hereafter referred to as the 
‘mean difference’).  

Eq. (16) can be further simplified by using the geomet-
ric relationship shown in Fig.4. Let the local variances σrx 
or σry be the horizontal side of the triangle, and let the mean 
differences be the vertical sides of the triangle. Then, the 
term in Eq. (16) can be expressed as 
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The relation between the two RCCs is simplified as 

( ) ( )cos cos sin sins r x y x yR i R i      .    (19) 

Eq. (19) shows that the SRCC Rs(t) comprises Rr(t) and 
1 for certain weights. The weight of Rr(t) is cosγxcosγy 
(cosine weight) and the weight of 1 is sinγxsinγy (sine 
weight). Both weights are not independent but are con-
nected by trigonometric functions. The two angles γx and 
γy can be simply determined by the ratio of the mean dif-
ference to the local variance using Eq. (17). According to 
Eq. (18), the larger variance supports a dominant ‘cosine 
weight’, and the large mean difference benefits the ‘sine 
weight’. In the extreme cases when the mean difference is 
zero, the two correlation coefficients are equal, while 
when the variance of the anomaly is zero, the SRCC is 
equal to 1. 

The relationship between the LRCC and SRCC is ex-
pressed by Eq. (19), but in practice, Eq. (19) is used only 
for understanding Rs(t), not for real calculations. The SR- 
CC is calculated using Eq. (8). The physical significances 
of the two RCCs are discussed in the next section. 

 

Fig.4 The geometric relationship between local variance 
and mean difference.  

4 The Physical Significance of SRCC 

As proven above, the LRCC given by Eq. (6) is a rea-
sonable way to reflect the anomaly-related correlation pro- 
perties. The contribution of the varying mean is not in-
cluded in the LRCC, which will result in some missing 
important information. Thus, determining an improved 
form of the RCC is necessary. The SRCC Rs(t) has proven 
to be a type of correlation coefficient including the con-
tributions of the varying anomaly and varying local mean, 
which is what we want to show. The physical significance 
of the SRCC needs to be further discussed. Here, we use 
an analogy to enhance our understanding of the SRCC via 
the form given in Eq. (19). 

The position of the sun in the sky in the equatorial co-
ordinate system was described by (Cooper, 1969) 

cos cos cos cos sin sin      ,       (20) 

where Θ is the solar zenith angle, τ is the sun time angle, 
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δ is the sun declination, and φ is the geographical latitude. 
These parameters are sketched for the equatorial coordi-
nate system in Fig.5. Eq. (19) for SRCC is very similar to 
Eq. (20) which could be analogously compared. In Eq. (20), 
the solar time angle τ is the angle between the meridians 
of the sun and the observer. For an observer standing at 
the meridian of the local time, at the noon moment, τ is 0˚, 
and at 6 am/pm, it is 90˚. Variations of the time angle are 
caused by the Earth’s rotation, such that the time angle 
reflects only the meridian of where the sun is located. To 
affirm the position of the sun on the meridian, two other 
important factors need to be considered: the sun’s decline 
and the geographical latitude of the observer, which are 
independent of the time angle. The sun’s declination δ 
varies between 23.27˚ with an annual period, which di-
rectly determines the latitudinal distribution of the length 
of a day. For example, the length of a day at the equator is 
12 hours, while in polar summer the length of a day can 
be up to 24 hours. When the observer’s geographical lati-
tude is given and the sun’s declination is known, the solar 
zenith can be completely affirmed. 

 

Fig.5 The sun’s position in the equatorial coordinate sys-
tem. τ is the sun time angle, δ is the sun declination, and φ 
is the geographical latitude. 

When the sun’s declination and the observer’s latitude 
are both zero, i.e., when the sun is above the equator and 
the observer is on the equator, the sun zenith angle is 
equal to the sun time angle τ by Eq. (20). If the sun decli-
nation or the geographical latitude, or both, is not equal to 
zero, the zenith angle will deviate from the time angle. 
Therefore, the time angle reflects only the meridian of the 
sun, while the zenith reflects the sun’s position at the me-
ridian. If only the time angle is considered, it is impossi-
ble to give the sun’s position.  

Similarly, Rr(t) in Eq. (19) corresponds to the time an-
gle, and Rs(t) corresponds to the solar zenith angle. The 
two angles of γx and γy are independent, corresponding to 
the sun’s declination and the observed latitude. The two 
angles are determined by their mean difference and the 
local variance of the two data sets. When and only when 
the two factors are considered, the running correlation 
coefficient, i.e., Rs(t), could express the complete correla-

tion, including the contributions of both variations in the 
anomaly and the changing mean. However, Rr(t) only 
reflects the contribution of the anomaly variation, meaning 
this value is incomplete for use as the running correlation. 

Let us go back to the example of the variations of air 
temperature. When the air temperatures in the two cities 
increase simultaneously, Rr(t) changes a little, but Rs(t) is 
obviously larger during this period. Therefore, Rs(t) could 
reflect the warm event, while Rs(t) would not.  

5 Verifying that Rs(t) Exceeds the Rr(t) 
Uses as An RCC 

Although SRCC is reasonable and has a clear physical 
significance, it is still necessary to prove that Rs(t) is a 
better RCC than Rr(t). In fact, there is a good criterion for 
this purpose: the temporal average of the RCCs should 
approach the global correlation coefficient. Because the 
running correlation has a smoothing effect, its average 
will not be equal to the global correlation coefficient, but 
their difference should not be large. Some examples of 
two RCCs calculated from the actual data are shown be-
low to prove that Rs(t) is a better RCC. 

5.1 The Correlation Between the Arctic Oscillation 
and North Atlantic Oscillation Indices  

The AO and North Atlantic Oscillation (NAO) are con-
sidered to be different aspects of the same process. The 
correlation of the AO and NAO indices (Figs.6a, b) is 
considerably high. The difference between Rr(t) and Rs(t) 
is not remarkable (Figs.6c, d). The global correlation co-
efficient of the two indices is 0.60, while the averages of 
these two RCCs are 0.56 and 0.58 for the AO and NAO, 
respectively. Both are close to the global correlation coef-
ficient. The cosγxcosγy and sinγxsinγy are 0.87 and 0.09, 
respectively, showing that the variations of the anomaly 
are more significant. Therefore, the two RCCs are close 
to each other. 

5.2 The Correlation Between the Mean Temperature 
Anomalies at 2 m and 500 hPa 

Fig.6 shows an example with a greater variance and 
smaller mean difference. Fig.7 shows an opposite exam-
ple, with a smaller variance and greater mean difference, 
showing the obvious difference between Rr(t) and Rs(t). 

The monthly air temperature anomalies averaged over 
the North Atlantic at 2 m and 500 hPa are shown in 
Figs.7a, b, and their Rr(t) and Rs(t) values are shown in 
Figs.7c, d. The global correlation coefficient between the 
mean temperature anomalies is 0.68. The average of Rr(t) 
is only 0.28, which is much lower than the global correla-
tion coefficient. The average of Rs(t) reaches 0.64, which 
is very close to the global correlation coefficient. Rr(t) is 
rougher than Rs(t) (Figs.7c, d), which results in a low av-
erage LRCC. However, Rs(t) eliminates many high-fre-
quency signals, showing a very high correlation between 
the two time series (Fig.7d). 

The variation ranges of the two local variances are very 
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Fig.6 The two running correlation coefficients between the AO and NAO. a), AO index (red line) and its local mean (blue 
line); b), NAO index (red line) and its local mean (blue line); c), Rr(t); d), Rs(t); e), the time series of the weights of 
cosγxcosγy (blue line) and sinγxsinγy (red line). 

 

Fig.7 Two running correlation coefficients between the 2 m and 500 hPa air temperature anomalies averaged for the North 
Atlantic. a), 2 m temperature anomalies (red line) and their local mean (blue line); b), 500 hPa temperature anomalies (red 
line) and their local mean (blue line); c), Rr(t); d), Rs(t); e), the time series of the weights of cosγxcosγy (blue line) and 
sinγxsinγy (red line). 

small, and the weight cosγxcosγy is only 0.18 (blue line in Fig.7e), whereas the mean difference is much larger, with 
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the weight of sinγxsinγy 0.59 (red line in Fig.7e). Obviously, 
a large mean difference leads to a great difference be-
tween Rr(t) and Rs(t). 

Therefore, Rs(t) satisfies the criterion of being consis-
tent with the global correlation coefficient. Additionally, 
there are some high-frequency spiky peaks in Rr(t) that 
should not exist, as the period of some peaks are shorter 
than the time window. Meanwhile, Rs(t) diminishes the 
high-frequency peaks and includes the action of low- 
frequency signals as expected, increasing the attention 
paid to the physical background of the low-frequency 
variations. The results suggest that Rs(t) is a better RCC. 

5.3 The Correlation Between the Cloudiness and the 
Downward Shortwave Radiation in Nordic Seas 

The correlation between the cloudiness and solar short- 
wave radiation anomalies in Nordic seas (Figs.8a, b) is 
very high, with a global correlation coefficient of −0.72. 
The RCCs also show a very good negative correlation, 
with slight differences in 2005–2006 (Figs.8c, d). The av-
erage values of Rr(t) and Rs(t) are −0.81 and −0.71, re  

spectively. Although Rr(t) is greater than Rs(t), Rs(t) re-
mains closer to the global correlation coefficient and is a 
more believable RCC. The weights cosγxcosγy and sinγx- 
sinγy are 0.54 and −0.25 (Fig.8e), respectively, showing 
that the contribution of the variance is greater than that of 
the mean difference. 

Note that the large deviations of cloudiness and the ar-
riving shortwave radiation in 2005–2006 are unreasonable. 
However, as these values are regional averages, these de-
viations might be caused by unique processes that we 
have not yet identified. This result suggests that the RCC 
can indicate the potential abnormal events in the data. 

5.4 The Correlation Between the Cloudiness and Sea 
Ice Concentration in the Central Arctic 

The correlation between the cloudiness and sea ice con-
centration in the central Arctic was discussed by Ji and 
Zhao (2015). The relationship between the cloudiness and 
sea ice concentration is interesting. If the cloud change is 
caused by the sea ice, i.e., less sea ice results in more 
clouds, both should be negatively correlated. On the other 

 

Fig.8 Two running correlation coefficients of the cloudiness and arriving solar short-wave radiation in Nordic seas. a), the 
cloudiness anomaly (red line) and its local mean (blue line); b), the arriving shortwave radiation anomaly (red line) and its 
local mean (blue line); c), Rr(t); d), Rs(t); e), the time series of the weights of cosγxcosγy (blue line) and sinγxsinγy (red line). 

hand, if the sea ice concentration is influenced by the 
cloudiness, increasing cloudiness results in increasing sea 
ice, and the two should be positively correlated. 

The daily low cloudiness and sea ice concentration 
values from 1992 to 2012 are presented in Figs.9a, b. 
Their global correlation coefficient is −0.21, showing that 
decreases of sea ice concentrations increase the genera-
tion of low clouds. The average values of Rr(t) and Rs(t) 

are −0.20 and −0.24, respectively, which are both close to 
the global correlation coefficient. The negative correla-
tion is dominant, and the RCC can be more than −0.5 
during negative correlation stages. However, since the 
past decade, the positive correlation stage has become 
dominant, which indicates a changed impact of the clouds 
on the sea ice. The positive correlation is related to the 
sea ice retreat in the Arctic, especially in 2010, when the 
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sea ice concentration in the central Arctic reached its 
minimum (Zhao et al., 2018). This pattern implies that 
more solar energy enters the ocean to melt sea ice when 
the cloudiness decreases. The transition from a negative 
correlation to a positive correlation is interesting and is 
worth further study. 

5.5 Advantage of the SRCC 

The above examples for ocean and atmosphere exhibit 
the characteristics of the two RCCs. The SRCC Rs(t) is 
the weighted average of Rr(t) and 1. The weights are not 
independent, but comprise and are linked by the sine and 
cosine functions, such that the SRCC in any case is less 
than or equal to 1. The contributions of the variance of the 
anomaly and of the mean difference to the correlation are 
accounted for. The frequency of the mean variation is 
lower than that of the variation of the anomaly; thus, the 
former contributes the low-frequency part of the Rs(t). 
When the anomaly variation contribution is dominant, 
Rs(t) and Rr(t) are quite similar and difficult to distinguish. 

However, when the contribution of the mean variation is 
dominant, Rs(t) and Rr(t) are markedly different, and the 
frequency of Rs(t) is lower than that of Rr(t). 

Because the RCC is used to reveal temporal variations 
of the correlations of two time series, the most important 
issue is that the values of the RCC at different time points 
should be comparable. The LRCC has a serious flaw as it 
cannot reflect the correlations caused by varying means. 
Thus, the values of the LRCC at different time points are 
not comparable. However, the SRCC can reflect the cor-
relations caused by both the anomaly variations and vary-
ing means, representing complete comparability of the 
correlations at different time points. The comparability of 
correlations reflects the similarities of the two physical 
processes at different times. The average of the SRCC 
values is always close to the total correlation coefficient, 
showing their mathematical and physical consistencies. 
Furthermore, SRCC is a simple algorithm and is easy to 
use. Therefore, we suggest the use of the SRCC instead of 
the LRCC when calculating the RCC. 

 

Fig.9 Two running correlation coefficients between the cloudiness and sea ice concentrations in the central Arctic. a), the 
cloudiness anomaly (red line) and its local mean (blue line); b), the sea ice concentration anomaly (red line) and its local 
mean (blue line); c), Rr(t); d), Rs(t); e), the time series of the weights of cosγxcosγy (blue line) and sinγxsinγy (red line). 

6 Conclusions 

To study the temporal variations of the correlations of 
two time series, a RCC must be calculated. An RCC is 
calculated for a given time window, and the window is 
then moved sequentially through time to obtain a varying 
correlation coefficient. The current calculation method for 
the RCC is based on the general definition of a correla-

tion coefficient, i.e., the RCC value is calculated using the 
data within the time window, which we refer to as the 
LRCC. It is noted in this paper that the LRCC reflects 
only the correlations between the two anomalies within 
the time window and fails to reflect the contributions of 
the two varying means. In fact, the lack of the contribution 
from the varying means is an unavoidable problem, and a 
solution cannot be provided by the algorithm of the LRCC. 

To address this problem, the global mean for all data is 
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used to calculate the RCC, which is called the SRCC. The 
SRCC is related not only to the anomaly variation de-
scribed by the LRCC but also to the contribution of the 
varying means. An important advantage of the SRCC is 
that the contribution of the varying means to the correla-
tion is adequately considered. 

To prove that the SRCC is a better method for use in 
the running correlation, a criterion is proposed and adopted 
that the temporal average of the RCCs should be close to 
the global correlation coefficient. Some examples are dis-
cussed in this paper to further our understanding of the 
difference between the two RCCs. If the anomaly varia-
tions in the two processes are dominant, the two RCCs 
will be consistent. If the contribution of the varying means 
is dominant, the difference between the two RCCs will be 
large. In general, the average of the SRCC is close to the 
global correlation coefficient, while in most cases, the 
average of the LRCC cannot match the criterion. Addi-
tionally, the high-frequency noise in the LRCC does not 
appear in the SRCC, showing a reasonable low-frequency 
variation as an RCC. Importantly, as established by the 
use of the global mean, the SRCC values at different time 
points are intercomparable. Therefore, the SRCC is better 
than the LRCC for use in running correlations. We sug-
gest the use of the SRCC instead of the LRCC to calcu-
late the RCCs of two time series.  

Although the SRCC has been proven to be a reasonable 
and a better running correlation coefficient, this method 
has not been proven to be an exclusive RCC. Hopefully, 
this result will lead to further research on running correla-
tions. 

Acknowledgements 

This study is supported by the Key Program of the Na-
tional Natural Science Foundation of China (No. 41330960) 
and the Global Change Research Program of China (No. 
2015CB953900). We are thankful to Dr. Yanyue Shi for 
her helpful suggestions. 

References 
Chen, G. S., Wang, Y. M., Liu, D. F., and Liu, S. Y., 2016. De-

tection of basin runoff variation based on moving correlation 
coefficient method. Journal of Natural Disasters, 25 (1): 11- 
18. 

Cooper, P. I., 1969. The absorption of radiation in solar stills. So- 
lar Energy, 12 (3): 333-346. 

Elias, A. G., and Zossi de Artigas, M., 2003. A search for an 
association between the equatorial stratospheric QBO and so-
lar UV irradiance. Geophysical Research Letters, 30 (16): 337- 
356. 

Galton, F., 1888. Corelations and their measurement, chiefly 
from anthropometric data. Proceedings of the Royal Society of 
London, 45: 135-145. 

Ji, X. P., and Zhao, J. P., 2015. Analysis of correlation between 
sea ice concentration and cloudiness in the central Arctic. 
Haiyang Xuebao, 37 (11): 92-104 (in Chinese with English 
abstract) 

Kodera, K., 1993. Quasi-decadal modulation of the influence of 
the equatorial quasi-biennial oscillation on the north polar 
stratospheric temperatures. Journal of Geophysical Research 
Atmospheres, 98 (D4): 7245-7250. 

Maurer, C., Koch, E., Hammerl, C., Hammerl, T., and Pokorny, 
E., 2009. BACCHUS temperature reconstruction for the pe-
riod 16th to 18th centuries from Viennese and Klosterneuburg 
grape harvest dates. Journal of Geophysical Research At-
mospheres, 114 (D22): D22106. 

Pearson, E. S., 1938. Karl Pearson: An appreciation of some as-
pects of his life and work. Biometrika, 28 (3-4): 193-257. 

Pearson, K., 1896. Mathematical contributions to the theory of 
evolution. – On a form of spurious correlation which may 
arise when indices are used in the measurement of organs. 
Proceedings of the Royal Society of London, 60 (3): 489-498. 

Salby, M., Callaghan, P., and Shea, D., 1997. Interdependence 
of the tropical and extratropical QBO: Relationship to the so-
lar cycle versus a biennial oscillation in the stratosphere. Jour-
nal of Geophysical Research, 102 (D25): 29789-29798. 

Schmid, J., 1947. The relationship between the coefficient of 
correlation and the angle included between regression lines. 
Journal of Educational Research, 41 (4): 311-313. 

Soukharev, B., 1997. The sunspot cycle, the QBO, and the total 
ozone over northeastern Europe: A connection through the 
dynamics of stratospheric circulation. Annales Geophysicae, 
15 (12): 1595-1603. 

Varotsou, E., Jochumsen, K., Serra, N., Kieke, D., and Schneider, 
L., 2015. Interannual transport variability of upper Labrador 
Sea water at Flemish Cap. Journal of Geophysical Research 
Oceans, 120 (7): 5074-5089.  

Zhao, J. P., and Jie, S. U., 2004. Causes for correlation and in-
consistency between two kinds of low-frequent signals. Pe-
riodical of Ocean University of China, 34 (5): 697-703 (in 
Chinese with English abstract). 

Zhao, J. P., Barber, D., Zhang, S. G., Yang, Q. H., Wang, X. Y., 
and Xie, H. J., 2018. Record low sea ice concentration in the 
central Arctic during summer of 2010. Advances in Atmos-
pheric Sciences, 35 (1): 104-113, DOI: https://doi.org/10.10 
07/s00376-017-7066-6.  

Zhao, J. P., Cao, Y., and Shi, J., 2006. Core region of Arctic 
oscillation and the main atmospheric events impact on the 
Arctic. Geophysical Research Letters, 33 (22): L22708. 

(Edited by Chen Wenwen) 

 

 


