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Abstract The coastal shelf region of East Antarctica is hypothesized to be shielded from the offshore heat
of Circumpolar Deep Water (CDW) due to the dynamic barrier of the Antarctic Slope Front. Yet modified
CDW (mCDW) intrudes into the coastal environment in key locations, with impacts on dense shelf water
formation and ocean/ice shelf interaction that remain largely unquantified. Using moored measurements
and conductivity-temperature-depth-instrumented seal hydrographic data collected in Prydz Bay, East
Antarctica, we find buoyancy-driven upwelling of mCDW into the subsurface (~50 m) layer of the
southeastern embayment. Wintertime convection extends as deep as 300 m, entraining heat of the upwelled
mCDW to the surface. Accumulated sensible heat supply to the surface through deep convection during
June-July reduces the potential sea ice production by 45% in the Davis Polynya, demonstrating that
stronger/warmer mCDW intrusions onto the shelf will likely reduce the shelf water density and threaten
Antarctic Bottom Water formation.

Plain Language Summary Sea ice formation in key coastal polynyas (areas of open water or
newly formed thin ice in the middle of the extensive pack ice) around Antarctica is critical to Antarctic
Bottom Water (AABW) production. The intrusion of warm, modified Circumpolar Deep Water (mCDW)
onto the continental shelf in East Antarctica conveys heat toward the shelf region at intermediate depth,
capable of impacting sea ice formation in coastal polynyas. Here we use moored measurements and
conductivity-temperature-depth-instrumented seal hydrographic data to shed new light on the interaction
between sea ice formation and the heat flux from these mCDW intrusions. Due to the buoyancy contrast
with the cold, dense shelf water, the warmer mCDW upwells to shallower depths in the coastal regions.
When the winter freezing season begins, surface cooling and brine rejection due to sea ice formation drive
convection, deepening the mixed layer and entraining heat of the upwelled mCDW to the surface, which
results in a negative feedback that reduces sea ice production. The processes identified in this study have
strong implications for AABW production, given the projected increase of mCDW intrusions in the future.

1. Introduction

The mixing of modified Circumpolar Deep Water (nCDW) and Dense Shelf Water (DSW, also referred to as
High Salinity Shelf Water) is one of the crucial processes in the formation of Antarctic Bottom Water
(AABW), which is a key component of the Southern Ocean's meridional overturning circulation that trans-
ports cold and ventilated water to lower latitudes (Foster & Carmack, 1976; Orsi et al., 2002). Early thinking
suggested that broad shelf regions with large continental ice shelves were necessary to provide the residence
time to form cold, saline shelf water with sufficient density to produce AABW, such as Weddell Sea and Ross
Sea (Fahrbach et al., 1994; Foldvik, 2004; Jacobs et al., 1970). More recently, coastal polynyas have also been
found to support AABW formation through enhanced sea ice production and associated brine rejection,
such as those located in Adélie Land (Rintoul, 1998), Cape Darnley Polynya (Ohshima et al., 2013), and
Vincennes Bay (Kitade et al., 2014). Prydz Bay (Figure 1) in East Antarctica, characterized by the third lar-
gest continental embayment with Amery Ice Shelf (AIS) and multiple polynyas, always presented itself as a
likely AABW source (Middleton & Humphries, 1989; Nunes Vaz & Lennon, 1996; Yabuki et al., 2006).
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Figure 1. Bathymetry of Prydz Bay from Bedmap2 with 250-m contour intervals. The red and black stars represent the
mooring locations M10 and MO03, respectively. The gray dots on the background show the locations of seal conductiv-
ity-temperature-depth records for April-September used in this study. CD: Cape Darnley; FLB: Four Ladies Bank.
Locations of the Mackenzie Polynya (MP) and Davis Polynya (DP) are shown as cyan lines following Williams et al. (2016).
General circulation in Prydz Bay is shown as black lines.

However, it was not confirmed until conductivity-temperature-depth (CTD) data from instrumented
elephant seals in Mackenzie Bay Polynya and the outflow region of Prydz Channel were shown to be
sufficient to make a contribution, albeit fresher due to AIS basal melt, to Cape Darnley Bottom Water
(Williams et al., 2016).

Four main water masses are known to occupy the shelf of Prydz Bay: Summer Surface Water (SSW,
—18°C < T<21°C, 306 <S < 34.2), DSW (=195 °C < T < —1.85 °C, S > 34.5), Ice Shelf Water
(ISW, T < —1.95 °C), and mCDW (—1.85 °C < T < —0.5 °C with a potential density between 27.72 and
27.85 kg/m?; Herraiz-Borreguero et al., 2015, 2016; Wong et al., 1998). The bay receives relatively fresh shelf
water input via a westward coastal current from the West Ice Shelf (Nunes Vaz & Lennon, 1996; Smith
et al., 1984). The costal current merges with the southern perimeter of the Prydz Bay Gyre (PBG) in the
southeastern region of the embayment and continues westward along the face of AIS (Nunes Vaz &
Lennon, 1996; Smith et al., 1984). Before joining the cyclonic PBG, the coastal current flows through two
polynyas, namely, the Barrier Bay Polynya and Davis Polynya, with their respective satellite-derived annual
ice production of 93 and 26 km? (Tamura et al., 2016; Williams et al., 2016). The salinity of the relatively
fresh coastal current water should increase due to the brine-rejection in the Barrier and Davis polynyas dur-
ing the freezing season. However, mooring results in 2001 indicated that the salinity of the coastal current
water east of the AIS did not increase until July (Herraiz-Borreguero et al., 2015), implying that the
expected salinity increase was hindered, either by the freshening impact of AIS basal melt or a reduction
in sea ice growth due to the sensible heat from warm mCDW intrusions.

Although the Antarctic Slope front (ASF) acts as a strong dynamical barrier to the inflow of CDW across the
shelf in East Antarctica (Spence et al., 2014; Thompson et al., 2018), intrusions of mCDW have been
observed in the sea ice growth season (March-August), entering Prydz Bay over Four Ladies Bank (FLB)
and occupying the eastern side of the bay following the cyclonic PBG and are directed toward the eastern
flank of the AIS (Herraiz-Borreguero et al., 2015; Liu et al., 2018; Williams et al., 2016). The interaction of
the AIS with mCDW heat transport has been clarified by several studies (Herraiz-Borreguero et al., 2013,
2015; Wong et al., 1998), and the AIS net basal melt rate driven by mCDW inflow was estimated at
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1.0 + 0.4 m/year (Herraiz-Borreguero et al., 2016), reducing local shelf water density and suppressing its
potential contribution to AABW formation (Williams et al., 2016). Earlier studies showed that the heat flux
from mCDW intruded onto the Ross Sea continental shelf can inhibit sea ice formation in coastal polynyas
(Jacobs & Comiso, 1989; Pillsbury & Jacobs, 1985). In the Mertz polynya, the sensible heat contribution of
mCDW was estimated to be much smaller than the latent-heat component (Bindoff et al., 2001; Williams
& Bindoff, 2003). However, the exact volume reduction of sea ice production (SIP) from mCDW intrusions
remained unknown. In Prydz Bay, Massom et al. (1998) suggested that upwelling of warm, deep water might
contribute to the formation of the Davis Polynya, but observational evidence quantifying the effect of
upwelled sensible heat on sea ice formation is also lacking in coastal polynyas.

The poleward wind shift in the Southern Ocean is projected to persist through the 21st century (Fyfe et al.,
2007), which will facilitate CDW intrusion onto the shelf and lead to an intense and rapid warming of
subsurface Antarctic coastal waters (Schmidtko et al., 2014; Spence et al., 2014). Many recent studies are
examining the impact of mCDW on ocean-ice shelf interactions, and the likely impact of increased oceanic
heat supply to the continental shelf. Silvano et al. (2018) discussed how there is a likely positive feedback
between mCDW and freshwater input from ice shelves. Williams et al. (2016) highlighted the impact of this
enhanced freshwater input on AABW. This study examines a parallel issue, the impact of oceanic heat
supply from mCDW on SIP. All three mechanisms need to be understood clearly in order to consider the
future of AABW. Here we focus on reduction of SIP along the eastern flank of Prydz Bay due to the upward
heat flux from mCDW intrusions. We use instrumented seal CTD data collected during the freezing season
(April-September), and mooring observations deployed along the pathway of mCDW inflow. Given the
enhanced CDW upwelling and intrusion onto shelves in the Southern Ocean, this study provides new
insights into potentially negative effects of CDW heat on SIP and shelf water density around East Antarctica.

2. Observations and Data

In 2015 the CHINARE (Chinese National Antarctic Research Expedition) research program sent the R/V
Xuelong to conduct an CTD survey of Prydz Bay and deployed moored instruments in key regions relating
to the inflow of mCDW. A mooring (M10 in Figure 1) was deployed with temperature and conductivity
recorders (RBR solo T, concerto CT, and Sea-Bird MicroCATs) in late February 2015 and recovered in
December, collecting data at 30-min intervals. The mooring location (75°22.7'E, 68°28.6'S, 612 m) was
selected near the expected pathway of mCDW intrusion, in the southeast part of Prydz Bay. Conductivity
and temperature data were obtained at 200 and 300 m to identify water mass modification due to seasonal
ice production and mCDW intrusion. Temperature was also recorded at the deeper depths of 400, 450,
and 600 m. Additional temperature and salinity data obtained from instrumented elephant seals from
April to September across 2011-2015 were used to illustrate mCDW intrusion during ice formation season
(Figure 1). The calibration procedure for the seal CTD data is described in Roquet et al. (2014), with the accu-
racy of data estimated to be within 0.03 °C for temperature and 0.05 for salinity. Nearby historical Anderaa
current measurements from 1985 (Reeve, 1999), collected at 300 m from an Australian mooring at 76°29.4'E,
68°31.3’S (M03 in Figure 1), are used in this study to augment the water mass times series and estimate trans-
port rates on the shelf. Hourly current data were collected from January through July by MO03. Satellite-
derived SIP and ice thickness in 2015 are estimated from heat flux calculation during the freezing period
following Tamura et al. (2016).

3. Results
3.1. Intrusion and Upwelling of mCDW on the Shelf

In order to capture the vertical distribution of the initial inflow of mCDW into Prydz Bay, we define a section
using available seal temperature data for the month of April across 2011-2015 (Figure 2). The section is
defined across the FLB from the open ocean to the southeastern inner shelf, along the pathway of intruded
mCDW, which is shown to initially move onto the shallow FLB from the deep ocean and then become direc-
ted toward the eastern AIS front (Herraiz-Borreguero et al., 2015; Liu et al., 2018; Williams et al., 2016). The
isotherm extending from the shelf break rises northward to the base of the SSW layer, indicating the
existence of the ASF. Moving southward across the shelf break, there is a warm tongue of water
(> —1.7 °C) that also rises into the subsurface layer. This southward elevation of the isotherm describes
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Figure 2. Vertical section of temperature from seal conductivity-temperature-depthrecords in April (blue dots in the inset
map) from open ocean to inner shelf. Section location is shown in the inset map (red box), which is defined along
eastern side of Prydz Bay to highlight modified Circumpolar Deep Water intrusion.

the mCDW intrusion and its upwelling in the southeast region of Prydz Bay, where relatively warm mCDW
encounters cold DSW. The local upwelling is ascribed to the lower density of the warm mCDW relative to
colder DSW. The buoyancy difference between these two water masses pushes the warm mCDW upward,
causing upwelling in the southeast embayment. Figure 2 shows that the —1.7 °C isotherm (about 0.2 °C
above freezing temperature) rises to depth of approximate 50 m, providing a large amount of heat that
will become available to the surface when surface convection is initiated at the beginning of the
freezing season.

3.2. Convection of Subsurface Heat at the Onset of the Freezing Season

We examine the time series of temperature and salinity data at fixed depths recorded by the mooring M10
(Figure 3), whose location is close to the inflow pathway of mCDW, to verify that this heat supplied by
the upwelling mCDW is transported to the surface during the freezing season. The temperature at 200
and 300 m undergoes a substantial increase of 0.1 °C in late February (Figures 3a and 3b), marking the onset
of the warm mCDW intrusion. Following this rapid temperature rise, the temperature of the upper most
layer is maintained at —1.8 °C, approximately 0.1 °C above freezing temperature (—1.89 °C) from April
through May. Then an abrupt decrease in temperature occurs in late May that approaches the freezing tem-
perature, while warming is still clearly present below and becomes stronger (Figure 3b), which implies that
the mCDW intrusion above 300 m is still ongoing. This rapid decrease of temperature at 200 m is therefore
attributed to the arrival of cold saline surface water through deepened convection due to surface cooling and
sea ice formation, which is verified by the corresponding increase in salinity (Figure 3a). Salinity increase at
200 m in June indicates increasing polynya activity due to latent heat loss at surface, agreeing well with the
increase of SIP rate in Davis Polynya across June (Figure 3d), which is activated by a cooler atmosphere and
stronger katabatic winds in winter.

Warming below 200 m after late May, peaking at a maximum temperature of —1.81 °C in mid-June at 300 m
and early July at 400 m (—1.85 °C) and 450 m (—1.86 °C), indicates that the mCDW intrusion is persistent
and continues to supply heat to depths greater than 400 m for more than 4 months. By contrast, the deepest
water on the shelf is free of mCDW influence, with the observed temperature at 600 m absent of any warm-
ing signals (Figure 3c). The simultaneous occurrence of temperature maxima at 400 and 450 m implies that
the deepest warm water on the shelf is unaffected by this mixing process and can still access the AIS follow-
ing PBG. It is noteworthy that the SIP rate in the Davis Polynya shows a distinctly quiet period from July
through mid-August (Figure 3d), while thin ice still exists in the polynya with a monthly mean thickness
of ~0.1 m (Figure S1). This is counterintuitive because this is the heart of winter. This is ascribed to the
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Figure 3. (a and b) The 48-hr running mean of temperature (red) and salinity (blue) records from M10 at depths of
(a) 200 m and (b) 300 m. (c) The 48-hr running mean of temperature records from M10 at depths of 400 m (red), 450 m
(blue), and 600 m (magenta). (d) Daily SIP volume (blue) and 7-day running mean (red) in Davis Polynya in 2015.

(e) Current vectors at 300 m (30 days low-passed) from M03 from February through July. The black dashed line in a-c
depicts surface freezing temperature of —1.89 °C.

fact that the submerged mCDW is mixed up into the surface layer through deepened convection in winter
and the continuous sensible heat supply suppresses the sea ice formation in Davis Polynya. mCDW heat
in the vicinity of the Polynya has been stripped away by late August when the warm signal of the mCDW
intrusion disappears at all observed depths (Figures 3a-3c). So the synoptic SIP in Davis Polynya returns
to normal, and brine rejection continues to increase salinity at 200 and 300 m in September and October.

3.3. Reduction of Sea Ice Production

Section properties of temperature across the shelf break (Figure 2), together with the mooring time series
(Figure 3), demonstrate how the upwelling of warm mCDW in the southeastern shelf region provides an
upward heat flux to the surface layer once deep convection begins in the sea ice growth season. To quantify
the accumulated upward heat transport from the intermediate layer to the surface, the volume transport of
the mCDW intrusions onto the shelf must be estimated. In April, warm mCDW with potential density larger
than 27.72 kg/m? exists below the remnant SSW from April through July (Figure S2a), with the maximum
temperature of about —1 °C. The absence of this warm signal after July does not indicate the end of
mCDW intrusions, but rather the reduction in available seal CTD profiles as the pack ice thickens. The path
of mCDW onto the shelf is confined to a relatively narrow longitude range, centered at around 77°E (Figure
S2b), corresponding with the previous studies showing that mCDW flows southward along the east peri-
meter of the PBG toward southern limits of Prydz Bay (Nunes Vaz & Lennon, 1996; Williams et al., 2016).

Given that the temporal coverage of the mCDW intrusions ranges from late February to early August
(Figures 3a-3c) and the pathway of the intrusions onto the shelf is centered at 77°E (Figure S2b), the zonal
and vertical extent of the intrusions needs to be clarified to estimate the volume of warm water transport.
Monthly mean profiles of temperature (Figure 4a) in the southeastern embayment near the mooring
locations and Davis Polynya show that warm mCDW exists from the subsurface layer to deeper than
500 m. The mixed layer deepens from near 50 m to deeper than 300 m from April through July, and
mCDW heat above 300 m is incrementally removed by deepening convection. The initial entrainment of
heat from below the 200 m, into the surface, begins in late May (Figure 3a). Accordingly, we define a
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Figure 4. The general pattern of modified Circumpolar Deep Waterintrusion into Prydz Bay. (a) Monthly mean profiles of
temperature for April-July (bounded by 68.2-68.7°S, 75.5-77.5°E). The gray dashed line represents surface freezing
temperature. (b) Vertical section of temperature across the shelf using seal conductivity-temperature-depth records in
June (blue dots in the inset map). The black dashed line and squares represent the mooring line and sampling depths.
Location of the zonal section and mooring M10 are shown in the inset map (red box and black triangle).

zonal section across the shelf from the eastern limit of Prydz Bay westward to the AIS front (inserted map in
Figure 4b), based on seal CTD records in June, to identify the zonal extent of the warm mCDW inflows. The
closed —1.75 °C isotherm with a horizontal width of 64 km characterizes the inflow of the intruded mCDW
along the eastern flank of the PBG, whose core temperature at about 300 m is above —1.7 °C. It is notable that
warm water outside the closed isotherm of —1.75 °C inferred from the mooring observations (Figures 3a and
3b and 4b) can still supply heat to the surface through convection. As the warm mCDW reaches about 50 m
before the new winter surface mixed layer makes contact in April and the mixed layer deepens to greater
than 300 m in July (Figures 2 and 4a), it is reasonable to assume that the heat brought by the mCDW
intrusion at 50-300 m is transported to the surface through strong convection. This is the case in June
and July, while the mCDW thickness influenced by the mixing process before June is relatively smaller
and can be neglected. Meanwhile, compared with the upward heat flux (100 W/m?) when mCDW is
entrained to the surface through strong mixing in winter (Jacobs & Comiso, 1989), the downward heat

flux of mCDW (FH = pcpK,,%—g) is also estimated to be negligible at 0.16 W/m?, corresponding to a

diffusivity of K, ~ 10™* m?/s with a vertical temperature gradient of 4 x 10~ °C/m between 300 and
500 m (Figure 4a). Then the accumulated transport of mCDW heat (H) to the surface can be estimated as

H = pey (T—Ty) (z2—21) Dvt

where p is density of mCDW (1,028 kg/m”), c, is the ocean heat capacity (4,000 J - kg " - °C ~"), T'is the typi-
cal temperature of mCDW, Ty is the surface freezing temperature (—1.89 °C), z, is the maximum depth
(300 m) of strengthened convection during ice freezing season, z; is the upmost boundary (50 m) of
mCDW (Figures 2 and 4a), D is the typical zonal width of mCDW inflow (64 km), v is current speed of
mCDW intrusion, and ¢ is seconds for June-July when deep convection reaches the core depth of intruded
mCDW (Figures 3a and 4a) and SIP is suppressed by the mCDW heat (Figure 3d). A typical mCDW tempera-
ture is taken as —1.64 + 0.08 °C, mean temperature of warm water confined by the closed isotherm of
—1.75 °C, instead of the observed mooring temperature (—1.8 °C), because there is a deviation (~30 km)
between the location of M10 and the core pathway of the mCDW intrusion (Figures 1 and 4b).

Current speed of the inflow at 300 m is derived from the historical mooring (M03) measurements (Figure 3e),
which provide a mean southward velocity of 4.1 + 1.6 cm/s from March to the end of the records in mid-July.
The dynamic height distribution (Figure S3) shows that MO03 is close to the eastern flank of PBG, so the
current data records should reflect the actual state of the gyre to some extent, while being somewhat lower
in magnitude compared to the core inflow speed. Assuming all of the heat associated with the mCDW above
300 m where deep convection can reach in winter (Figure 4a) is transported into the surface layer via mixing,
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the accumulated convective heat transport from the mCDW to the surface is estimated to be
3.55 +2.52 x 10" J. By confining the time period to June-July, excluding mCDW with temperature lower
than —1.75 °C, and using current data that are outside the core inflow, we expect that this estimate is a
conservative lower limit of the total heat entrained to the surface through convection.

Thereafter, the volume reduction (VR) of SIP due to convective heat flux can be calculated as
VR = H/p,L;

where sea ice density p;= 920 kg/m? and sea ice latent heat of fusion L;= 3.34 x 10° J/kg. We estimate that
11.55 km? of the SIP volume is suppressed by the upward convective heat flux. The satellite-derived annual
cumulative SIP in Davis Polynya is 14.1 km® in 2015 (Figure 3d), and the multiyear mean value is estimated
to be 26 km® with interannual variability ranging from 7.8 to 41.4 km® (Tamura et al., 2016; Williams et al.,
2016). This means that the sensible heat from intruded mCDW reduces 45% of the potential SIP volume in
2015 and contributes effectively to the interannual variability.

4. Conclusions

It has been suggested that the East Antarctic shelf regions are largely shielded from the heat content, and
changes therein, of CDW due to the dynamic barrier of the ASF (Schmidtko et al., 2014). However, in this
study we show the direct evidence of mCDW intrusions onto the continental shelf region supplying
sufficient sensible heat to effectively reduce the local SIP in a coastal polynya. In the southeastern shelf
region of Prydz Bay, buoyancy-driven mCDW upwelling lifts the —1.7 °C isotherm as shallow as 50 m in
the late summer period, bringing large amounts of heat to the subsurface layer. While the upwelled heat
cannot reach the surface directly during the summer/fall period, the onset of winter convection entrains
the mCDW heat into the surface layer during the sea ice growth season. The accumulated convective heat
transport to the surface during June-July is approximately 3.55 + 2.52x10'® J, impacting the sea ice growth
conditions. The volume reduction of SIP during this period is estimated at 11.55 km?, approximate 45% of the
potential SIP volume in the Davis Polynya region. Williams et al. (2016) highlighted the risk to AABW from
increased freshwater input from ocean-ice interactions. This study shows that enhanced mCDW intrusions
could also have a similar impact on AABW by reducing SIP and DSW formation in coastal polynyas. While
historically it was common to distinguish between offshore sensible-heat and coastal latent-heat polynyas
(Massom et al., 1998), the recent decades of observations on the Antarctic margin suggest that many, if
not all, are to some degree a hybrid of wind-driven forcing at the surface and some interaction with
mCDW heat below, or alternatively upstream. If, as projected, the overall supply of oceanic CDW heat to
the Antarctic continental shelf increases into the future due to strengthening and poleward-shift in westerly
winds (Spence et al., 2014), the sensible heat component of these hybrid systems will increase, decreasing
dense shelf water formation and ultimately, AABW production.
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