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Abstract  Seasonal prediction of East Asia (EA) summer rainfall, especially with a longer-lead time, is in great demand, but still 
very challenging. The present study aims to make long-lead prediction of EA subtropical frontal rainfall (SFR) during early summer 
(May–June mean, MJ) by considering Arctic sea ice (ASI) variability as a new potential predictor. A MJ SFR index (SFRI), the lead-
ing principle component of the empirical orthogonal function (EOF) analysis applied to the MJ precipitation anomaly over EA, is 
defined as the predictand. Analysis of 38-year observations (1979–2016) revealed three physically consequential predictors. A 
stronger SFRI is preceded by dipolar ASI anomaly in the previous autumn, a sea level pressure (SLP) dipole in the Eurasian conti-
nent, and a sea surface temperature anomaly tripole pattern in the tropical Pacific in the previous winter. These precursors fore-
shadow an enhanced Okhotsk High, lower local SLP over EA, and a strengthened western Pacific subtropical high. These factors are 
controlling circulation features for a positive SFRI. A physical-empirical model was established to predict SFRI by combining the 
three predictors. Hindcasting was performed for the 1979–2016 period, which showed a hindcast prediction skill that was, unexpect-
edly, substantially higher than that of a four-dynamical models’ ensemble prediction for the 1979–2010 period (0.72 versus 0.47). 
Note that ASI variation is a new predictor compared with signals originating from the tropics to mid-latitudes. The long-lead hindcast 
skill was notably lower without the ASI signals included, implying the high practical value of ASI variation in terms of long-lead 
seasonal prediction of MJ EA rainfall. 
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1 Introduction 
East Asia (EA) is vulnerable to summertime droughts 

and floods, which frequently cause devastating agricultural 
and economic losses (Tao and Chen, 1987; Yuan et al., 
2008a, b; Gu et al., 2009a, b). The losses arising from cli-
mate-related disasters have notably increased in recent 
years due to the economic boom. The life- threatening 
impact of droughts and floods on the dense population 
centers of EA has incentivized numerous scientists to 
investigate the causes and predictability of the East Asia 
summer monsoon (EASM) rainfall variations. One of the 
difficulties in EASM prediction is linked to prominent 
seasonal migration of the subtropical monsoon rain band 
from May to August (Tao and Chen, 1987; Wang and Ho, 
2002). Studies have shown that the May and June 
(MJ)/July and August (JA) rainfall patterns are similar. 
However, pronounced differences exist between early 
summer (MJ) and peak summer (JA) precipitation (Wang 

 
* Corresponding author. E-mail: huangf@ouc.edu.cn 

et al., 2009; Li and Zhou, 2011; Su et al., 2014; Oh and 
Ha, 2015). It has been proved by a series of studies that 
EASM prediction is beneficial when making MJ and JA 
summer predictions separately (Xing et al., 2016; Yim  
et al., 2016; Xing and Wang, 2017). This study addresses 
early-summer precipitation variability. 

The observed long-term mean precipitation in MJ is 
characterized by a prominent rain band extending about 
9000 km from the Bay of Bengal northeastward via Indo-
china, Southern China all the way to east of Japan. This 
prominent rain band is associated with the EA subtropical 
front (Tao and Chen, 1987), which is a defining feature of 
the Asian monsoon and produces the most prominent 
precipitation band in the global subtropics. This period 
involves the onset of the EASM over the South China Sea 
in mid-May, the Meiyu onset over China, and the Baiu 
onset in South Japan in early and mid-June. In MJ, Indo-
China, Southern China, Taiwan, and Okinawa all reach 
their yearly peak or one of their peaks in the local rainy 
seasons (Chen, 1983; Yim et al., 2014). Therefore, pre-
dicting the MJ subtropical frontal rainfall (SFR) is im-
portant for agricultural planning and water resource man-
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agement in these regions. Xing et al. (2017) has made a 
0-month lead objective prediction of anomalous MJ EA 
precipitation spatial structure using an alternative, empiri-
cal orthogonal function (EOF)-based physical-empirical 
(P-E) model approach. In a practical forecast, a sufficient 
lead time is needed to make timely management decisions. 
Therefore, long-lead seasonal prediction is in great de-
mand. However, the prediction would be difficult and the 
skills would decrease with increasing lead time using the 
precursors originated from the tropics to mid-latitudes 
(Wang et al., 2008; Lee et al., 2011; Xing et al., 2017). 
Identifying additional potential sources of predictors, es-
pecially from the polar regions, may be helpful in skill-
fully predicting MJ EA SFR at a longer-lead time.  

In recent decades, an increasing number of studies have 
postulated that Arctic sea ice (ASI) variability plays a 
crucial role in affecting global atmospheric circulation 
and modulating regional weather or climate (e.g., Alex-
ander et al., 2004; Magnusdottir et al., 2004; Singarayer  
et al., 2006; Deser et al., 2004, 2010; Holland et al., 2006; 
Serreze et al., 2007; Wang and Overland, 2009; Kumar  
et al., 2010; Li and Wu, 2012; Zhang and Li, 2016; and 
many others). The role of ASI in the EA climate system 
has been extensively investigated using observations and 
simulations. For instance, Zuo et al. (2016) suggested that 
autumn ASI anomalies may affect winter temperature in 
China through modulating the Siberian High. Numerical 
results from Wu et al. (2011) indicated that anomalous ASI 
can lead to an anomalous blocking high over the northern 
Eurasian continent in winter and in turn influences the EA 
winter monsoon. Reduced ASI the previous winter may 
favor rich spring precipitation over EA by exciting down-
stream teleconnections with a distinct Rossby wave train 
prevailing over the Eurasian continent (Wu et al. 2016). 
Wu et al. (2009b) found that spring ASI corresponded to 
anomalous China summer rainfall through a south-north 
dipole structure over EA south to Lake Baikal. Therefore, 
we can conclude that ASI has a crucial contribution to 
seasonal prediction of EA climate. However, in different 
seasons, the effects and the corresponding physical mecha-
nisms may vary. It is still not clear how ASI affects varia-
tions in MJ SFR and to what extent it contributes to the 
MJ EA rainfall prediction.  

The present work attempts to consider ASI as a poten-
tial predictor and translate its signals into useful predic-
tion tools. Also, a long-lead prediction model is estab-
lished to predict MJ SFR using ASI anomalies along with 
signals from the tropical to mid-latitude regions. In Sec-
tion 2, we describe the data sets and the method used in 
this study. The distinctive rainfall and circulation struc-
tures of an enhanced MJ subtropical front are briefly de-
scribed in Section 3 as background information. The sta-
tistical relationship of each predictor with MJ subtropical 
fronts and their associated physical effects are presented 
in Section 4. In Section 5, a long-lead P-E model is estab-
lished to forecast the strength of the MJ SFR, and a hind-
cast is performed for the 1979–2016 period. Section 6 
summaries the main conclusions and discusses some out-
standing issues.  

 
2 Data and Methods 
2.1 Data 

The main datasets employed in this study include 1) 
monthly mean precipitation data from the Global Precipi-
tation Climatology Project (GPCP, v2.3) datasets (Huff-
man et al., 2011); 2) monthly mean SST from NOAA Ex-
tended Reconstructed SST (ERSST v4, Huang et al., 2015; 
Liu et al., 2015); 3) monthly mean atmospheric fields, 
taken from ERA-interim (Dee et al., 2011); 4) sea ice 
concentration (SIC) data from the Hadley Center Sea Ice 
and Sea Surface Temperature datasets (HadISST, Rayner 
et al., 2003). 

The data period chosen in this study is 1979 to 2016, 
since there was a prominent decadal shift in the late 1970s, 
which has caused significant changes in the EASM- 
ENSO relationship (Wu and Wang, 2002; Zhou et al., 
2009; Yun et al., 2010). Focusing on the recent 38 years 
can partially avoid the complexity arising from multi- 
decadal impacts on year-to-year variations. Early-summer 
rainfall anomalies are calculated from the deviation of MJ 
mean rainfall from the 38-year climatology (1979–2016). 

2.2 Method 

A P-E prediction model was established to predict MJ 
SFR. Selection of physically meaningful predictors was at 
the heart of the P-E model. More specifically, we empha-
sized understanding of the physical processes that explain 
the lead-lag relationships between the predictors and the 
predictand in the selection of predictors. Statistical tests 
were used as an auxiliary tool to maximize the predictors- 
predictand correlation in training periods, to confirm their 
significance, and ascertain mutual independence among 
the predictors (Wang et al., 2015b). This means that those 
predictors should have been relatively independent in 
their physical meanings and should have avoided those 
predictors that were well-correlated. 

The P-E model has been applied to predict Asia summer 
rainfall (Li and Wang, 2016; Xing et al., 2016; Yim et al., 
2016), summer rainfall over northwest China (Xing and 
Wang, 2017), and other climate variability (e.g., Lee et al., 
2013; Wang et al., 2013). These studies all concluded that 
the P-E prediction model is a useful approach for seasonal 
prediction compared with the current dynamical models, 
especially over subtropical to mid-latitude regions. 

Stepwise regression was used to establish the P-E model. 
Prior to regression, all variables were normalized by re-
moving their means and dividing by their corresponding 
standard deviation, which allowed direct comparison of 
the relative contribution of each predictor by examining 
the normalized regression coefficient.  

Stepwise regression identifies the ‘most desirable’ pre-
dictors at each step. Each selected predictor had a signifi-
cant contribution to increasing the regressed variance by a 
standard F-test (Panofsky and Brier, 1968). A 95% statis-
tical significance level was used as a criterion to select 
new predictors at each step. Once selected into the model, 
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a predictor can only be removed if its significance level 
falls below 95% by the addition/removal of another vari-
able. To circumvent overfitting, the number of predictors 
was required to be less than or equal to 4 (i.e., about 10% 
of the sample size of 38). 

A cross-validation method (Michaelsen, 1987) was used 
to make a retrospective forecast. To lessen the overfitting 
problem, we left out three years of data progressively 
centered on a forecast target year for the period of 1979– 
2016, then trained the model by using the data of the re-
maining years and finally applied the model to forecast 
the three target years.  

3 Interannual Variability of Subtropical 
Frontal Rainfall in Early Summer 

3.1 An Index that Measures the Strength of  
Subtropical Frontal Rainfall 

To facilitate the study of the interannual variation and 
prediction of the MJ SFR, an EOF analysis was applied to 
the MJ mean precipitation anomaly over EA (20˚N–45˚N, 
100˚E–130˚E). The leading mode accounted for 26.0% of 
the total interannual variance. According to the rule given 
by North et al. (1982), the leading mode is statistically 
distinguished from the rest of the eigenvectors in terms of  

the sampling error bars.  
The spatial pattern of the first EOF mode (Fig.1a) 

showed a north-south dipole pattern with enhanced pre-
cipitation over southern China to the East China Sea and 
dry anomalies over central China and southern Korea. 
Another weak positive rainfall center was located to the 
far northeast of China. The time series of the first princi-
pal component (PC1) exhibited considerable interannual 
variations as well as a decadal shift in the early 1990s 
(Fig.1b). The simultaneous large-scale precipitation ano- 
malies associated with PC1 demonstrated an enhancement 
of the entire MJ SFR, stretching from southern China to 
south of Japan compared to the climatological MJ mean 
precipitation (Fig.3c).  

In order to test the robustness of this leading mode, we 
conducted an EOF analysis of land precipitation for the 
same EA domain (i.e., the land coverage was the same 
but no ocean rainfall) during the 56-year period (1960– 
2015). The results showed that both the spatial patterns 
and the PCs were extremely similar to those of the lead-
ing mode shown in Figs.1a and 1b in spite of different 
datasets, training period, and analysis domain (one has 
ocean and the other has no ocean), indicating that the 
leading mode of MJ EA rainfall is remarkably robust 
(Figures not shown).  

 

Fig.1 (a) Spatial pattern and (b) corresponding principal component (PC1) of the first EOF mode (EOF1) derived from 
May–June (MJ) mean precipitation over East Asia (20˚N–45˚N, 100˚E–130˚E) for the period of 1979–2016. (c) MJ pre-
cipitation rate (contours in units of mm day−1) averaged for 1979–2016 and the correlation coefficients of anomalous MJ 
mean precipitation based on PC1 (shading). (d) Correlation maps of anomalous MJ mean SST (shading over ocean)/2 m air 
temperature over land (T2M, shading over land)/SLP (contours) anomalies based on PC1. Areas exceeding 90% confidence 
level for rainfall, SST and T2M are dotted in (c) and (d). Red/blue thin contours in (d) indicate positive/negative correlation 
coefficients of 0.1 and 0.4. Thick contours in (d) represent the correlation coefficient ( 0.27) significant at the 90% confi-
dence level for SLP. 

Therefore, the leading PC (Fig.1b) was used to meas-
ure the intensity of the MJ SFR. A high value of the SFR 
index (SFRI) was characterized by abundant Meiyu/Baiu 
frontal rainfall. This index could also tell us the percent-
age of total variance it accounts for. This piece of infor-
mation is desirable for any quantitative measure.  

3.2 Structure of Rainfall and Circulations  
Associated with a Strong SFRI 

The MJ SFR anomalies have significant interannual 
variability (Fig.1b). To see what large-scale circulation 
anomalies affect the rainfall variation, simultaneous cor-
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relation maps of the precipitation, SST, 2 m air tempera-
ture over land, and SLP anomalies with reference to SFRI 
are depicted in Figs.1c and 1d. 

A positive SFRI was associated with a strong, large- 
scale anomalous high over the Philippine Sea and the Nor- 
th Pacific implying a strengthened western Pacific sub-
tropical high (WPSH). Cooling SSTs (albeit weak) ap-
peared to the southeast of the WPSH anomaly as the 
anomalous northeasterly winds strengthened mean easter-
lies. The Philippine Sea was warmed due to the reduced 
cloudiness and increased downward solar radiation. Note 
that the northern Indian Ocean warming is also a result of 
the subsidence and easterly anomalies associated with the 
extended anticyclone. In correspondence with the WPSH 
anomaly, a pronounced rainfall deficit was seen in the 
western North Pacific (WNP).  

To the north of the suppressed rainfall region, abundant 
moisture was transported toward the EA subtropical mon-
soon frontal zone along the northwest flank of the ano- 
malous anticyclone, leading to increasing precipitation 
over southern China and the Meiyu/Baiu band. The en-
hanced rainfall band was also accompanied by a cyclonic 
lower SLP anomaly located over eastern China and the 
coastal areas, which can be seen clearly in Fig.1d.  

Another significant characteristic associated with a 
strong SFRI was that the Okhotsk High pressure was 
strengthened along with reduced precipitation. Several 
studies (Ding, 1992; Wang et al., 2001) have pointed out 
that the Okhotsk High is one of the crucial systems in 
characterizing the Meiyu/Baiu system. To the west of the 
anomalous high, warm air is transported to northeastern 
Eurasia along the southerlies, inducing anomalous land 
warming there. To its east side, the high anomaly brings 
cold air from the north to meet with warm and moist 
southwesterlies, enhancing the subtropical frontal rainfall. 
Note that the regression patterns of 850 hPa and 500 hPa 
geopotential height with reference to PC1 (Figures not 
shown) exhibited similar characteristics with the correla-
tion map of SLP (Fig.1d), demonstrating the robustness 
of the atmospheric circulation anomalies associated with 
the SFRI. 

As a summary of the foregoing, there are three featured 
circulation systems that are closely related to MJ SFR 
enhancement: a) anomalous higher SLP over WNP, b) 
local lower SLP over eastern China, and c) an enhanced 
Okhotsk High. These features provide illuminating hints 
for searching for predictors. In the following section, we 
will choose associated predictors that have physical link-
age with these circulation systems.  

4 Physical Predictors in Predicting SFRI 
The selection of predictors in this study was primarily 

based on the three circulation characteristics discussed in 
Section 3.2 and our physical understanding of the lead-lag 
linkage between the predictand and predictors. Statistical 
tests and stepwise regression were used as auxiliary tools 
to verify the statistical significance and relative independ-
ence of the selected predictors. 

In selecting predictors, we considered SST, SLP, and 
SIC. SST and SLP, which are in accordance with the me-
teorological parameters used for predicting EA rainfall 
during July–August (Xing et al., 2016) and various other 
relative works (Wang et al., 2015a; Xing and Wang, 2017), 
can reflect anomalous lower boundary conditions over the 
ocean and land surfaces. SIC, representing the ASI varia-
tion, is explored in this study as a new potential predictor 
since the crucial roles of ASI in EA climate variability 
have been identified by numerous works (Wu et al., 2009a; 
Zuo et al., 2016, and many others). The physical proc-
esses of SIC, SLP, and SST affecting SFRI variability are 
discussed in the following subsection. No other circula-
tion anomalies were selected because the seasonal circu-
lation anomalies were driven by interaction with the lower 
boundary anomalies and have little memory by them-
selves, except for SLP.  

4.1 Arctic Sea Ice Signals 

To investigate the relationship between the early- 
summer SFR and ASI, we calculated the correlation coef-
ficients (CCs) between the SFRI and the bimonthly run-
ning mean SIC over the Arctic in the preceding twelve 
months from the previous July to April of the target year. 
As shown in Fig.2, significant positive correlation values 
emerged over the Beaufort Sea expanding to the Greenland 
Sea during the previous autumn, and persisted into the 
following spring, reflecting the anomalous variation of 
multiyear sea ice. Another pronounced feature was the 
prevalence of significant negative values along the north-
ern edge of the Eurasian continent from the preceding late 
summer through autumn, then gradually weakening dur-
ing the following winter and disappearing in spring. It 
suggests that anomalous sea ice may yield precursory 
signals for an early-summer SFRI anomaly. The maxi-
mum CC of the combination signal appears in October– 
November (ON), during which period ASI experiences its 
strongest variation (Fig.2d). 

In light of the remarkable correlation with SFRI as well 
as the higher persistence of this relationship, dipolar Arc-
tic SIC anomalies during the preceding ON mean were 
selected as one of the predictors of SFRI. The predictor 
named ARCSIC was defined by the differential SIC ano- 
malies averaged over the Beaufort Sea to the Green-land 
Sea (75˚N–87.5˚N, 150˚W–0˚) and the northern sea- 
board of Eurasia (71˚N–78˚N, 60˚E–150˚W) during the 
previous ON mean (Table 1). This dipole SIC anomaly 
pattern seemed to interact with Arctic amplification effects.  

How can autumnal ASI affect the early-summer sub-
tropical front? To answer this question, we took the pre-
dictor ARCSIC as a reference and computed the simulta-
neous and lag correlations with large-scale circulation 
fields. The 2 m air temperature anomalies over the Arctic 
associated with ARCSIC showed pronounced negative 
values centering over the Beaufort Sea and surrounding 
areas in the preceding autumn and winter (Figs.3a–3b). 
This cooling signal was consistent with locally increasing 
SIC, shown in Figs.2d–2f. The correlated 500 hPa geopo-
tential high field with ARCSIC from autumn through win-
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ter showed a positive Arctic Oscillation (AO)-like pattern, 
e.g., negative pressures in the polar and subpolar regions 
and positive anomalies over mid-latitude regions (Figs. 
3c–3d). The CC between ARCSIC and the simultaneous 

AO index as defined by Li and Wang (2003a) was 0.39 
beyond the 95% confidence level. The 200 hPa westerly 
jet over high latitudes was strengthened, accompanied by 
the positive AO pattern. 

 

Fig.2 Correlation maps of bimonthly running mean sea ice concentration (SIC) over the Arctic based on PC1. Titles on top 
of each figure indicate the two-month period. White contours represent the correlation coefficient significant at the 90% 
confidence level. The sector regions in (d) outline the areas used to define the predictors. 

Table 1 Definition of each 3-month lead predictor selected for the prediction of MJ  
subtropical frontal precipitation variability 

Name Meaning Definition 

ARCSIC 
Previous October–November mean dipole SIC 
anomalies over Arctic 

SIC 
(75˚N–87.5˚N, 150˚W–0˚) − (71˚N–78˚N, 60˚E–150˚W) 

EUASLP 
Previous December–January mean dipole SLP 
anomalies over Eurasia 

SLP 
(45˚E–145˚E, 50˚N–80˚N) − (110˚E–135˚E, 20˚N–40˚N) 

TPSST 
Previous December–January mean SSTA over 
equatorial Pacific 

SST 
(120˚E–145˚E, 10˚N–25˚N) + (120˚W–80˚W,10˚S–20˚N) − 
(180˚–140˚W, 10˚N–20˚N ) 

 
The AO is a climate mode characterized by winds cir-

culating counterclockwise around the Arctic at around 
55˚N latitude. When the AO is in its positive phase, a ring 
of strong winds circulating around the North Pole acts to 
confine colder air across polar regions. Therefore, the 
positive AO corresponds to cooling anomalies over Arctic 
regions, which was also seen in previous studies (Honda 
et al., 2009; Wu et al., 2011; Liu et al., 2012). To the con- 
trary, this belt of winds becomes weaker and more dis-
torted in the negative phase of the AO, which allows an 
easier southward penetration of colder, Arctic air masses. 

To the south of the anomalous higher pressure ridge, 
easterly anomalies appear over northern North Atlantic in 
autumn and strengthen in winter, favoring a cyclonic shear 
vorticity (Figs.3c and 3d). Hence, corresponding to the 

high-latitude pressure anomalies associated with ARCSIC, 
the North Atlantic displays a resultant dipole pattern of 
500 hPa geopotential height anomalies in winter. This 
dipole pattern shows a barotropic structure so that it can 
be captured clearly in the correlation map of SLP accom-
panying a tripole SST pattern (Fig.4a). A SLP and SST 
anomaly (SSTA) pattern persisted from winter to spring 
with a slightly northward movement, implying a negative 
North Atlantic Oscillation (NAO) phase. The CC between 
ARCSIC and the NAO index as defined by Li and Wang 
(2003b) during spring is −0.42, which is statistically sig-
nificant at the 99% confidence level.  

The North Atlantic tripole SSTA associated with a NAO 
negative phase may contribute to the downstream devel-
opment of subpolar teleconnections across northern Eura- 
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Fig.3 (a–b) Correlation coefficients of the previous October–November (ON) mean, previous December–January (DJ) 
mean, and 2 m air temperature based on the predictor ARCSIC. (c–d) Same as in (a–b) but for 500 hPa geopotential height 
(shading) and 200 hPa zonal winds (contours). Red solid contours indicate a positive correlation coefficient between 200 

hPa zonal winds and ARCSIC starting from 0.1 with an interval of 0.1. A similar interval applies to the green lines, except 
for a negative correlation. 

 

Fig.4 Correlation maps of (a) DJ mean and (b) February–April (FMA) mean SST (shading) and SLP (contour) based on the 
predictor ARCSIC. (c) Correlation maps of MJ mean precipitation (shading) and SLP (contour) based on ARCSIC. Red 
solid contours indicate a positive correlation coefficient between SLP and ARCSIC starting from 0.1 with an interval of 0.1. 
A similar interval applies to the blue lines, except for a negative correlation. 

sia, which enhances the high over the Ural Mountain and 
the Okhotsk Sea (Fig.4c). This process was verified by 

Wu et al. (2009b) in a numerical experiment. As discussed 
in Section 3.2, enhancement of the Okhotsk High is a key 
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feature strengthening MJ SFR. Therefore, ARCSIC is a 
physically meaningful predictor for SFRI prediction, re-
flecting the role of the Okhotsk High. This predictor only 
involves information before and during the preceding 
November. Thus, it is a 5-month lead predictor. 

4.2 Precursors from the Tropics and Mid-Latitudes  

Since this study focuses on long-lead prediction, all 
predictors are preferred to be at least three months ahead 
of May. Analysis of a large number of long-lead correla- 
tion maps reveals that the SST and SLP anomalies in the   

preceding winter season (December–January mean, DJ) 
have the best indicative signals. Fig.5 displays the corre-
lation maps of SST and SLP anomalies during the DJ 
mean associated with MJ SFRI, which yielded another 
two physically meaningful predictors. 

The second predictor was the dipole differential SLP 
anomalies during the DJ mean between northern Eurasia 
(45˚E–145˚E, 50˚N–80˚N) and the EA region (110˚E– 
135˚E, 20˚N–40˚N), which is called EUASLP. The dashed 
rectangular regions outline where the predictor EUASLP 
is defined (Fig.5). 

 

Fig.5 Correlation maps of anomalous DJ mean SST (shading) and SLP (contours) based on the PC1. Areas exceeding 90% 
confidence level for SST are dotted. Thick contours represent the correlation coefficient significant at the 90% confidence 
level for SLP. Red dashed contours indicate positive correlation coefficients of 0.1, 0.2, 0.4 and 0.5. A similar interval ap-
plies to the blue dashed line, except for a negative correlation. The rectangular regions outline where the predictors are de-
fined. 

This predictor corresponded to the large-scale dipole 
SLP anomaly pattern during winter through spring between 
the Eurasian continent and the northern Indian Ocean 
expanding to EA (Figs.6a and 6b). Anomalous westerlies 
prevailed along the southern flank of the lower SLP. The 
Indo-Pacific warm pool region warmed up due to the 
suppressed South Asian winter monsoon. In turn, the 
warmed SSTA over the tropical western Pacific favored 
intensive convection activities, inducing enhanced con-
vective precipitation. The wet signals can generate anoma-
lous cyclones to their west on both sides of the equator as 
a Rossby wave response, enhancing the aforementioned 
westerly anomalies (Fig.6c). Such an air-sea interactive 
process helps sustain the negative pressures. Accordingly, 
local lower SLP anomalies and anomalous cyclones oc-
curred over the South China Sea and southern China, in-
ducing plentiful rainfall there (Fig.6d). Therefore, this pre-
dictor corresponded to lower SLP anomalies over eastern 
China, which was one of the key characteristics that fa-
vored a stronger SFRI.  

Another significant precursor, shown in Fig.5, was the 
tripole SSTA pattern over the tropical Pacific. To quanti-
tatively depict this signal, a third predictor, named TPSST, 
was defined as the difference between the sum of the av-
eraged SSTs in two positive correlation boxes and the 
averaged SSTs in the negative correlation box (positive 
domain minus negative domain).  

The time series shown in Fig.1b indicates that a strong 
SFRI event often occurs after a peak El Niño, such as in 

1983, 1992, 1995, 1998, 2005, and 2010. The predictor 
TPSST reflects SSTA during a decaying ENSO that sets 
up favorable conditions for persistence of the anomalous 
higher SLP over WNP. The western Pacific warming and 
the cooling to its east imply an enhancement of higher pre- 
ssure (anticyclone) over WNP (Wang et al., 2000). Nume- 
rical experiments have shown that the positive thermody-
namic feedback between the Philippine Sea anticyclonic 
anomaly and the underlying Indo-WP SST dipole anoma-
lies can maintain both the anomalous anticyclone and the 
SST dipole through early summer (Lau et al., 2004; Wang 
et al., 2013). Thus, the TPSST is a precursor for the en-
hanced WPSH during MJ. This predictor was consistent 
with the predictor ‘JFMA EQSST’ used in MJ EA rainfall 
pattern prediction (Xing et al., 2017), except for the dif-
ferent lead time. The physical mechanisms behind the pre-
cursor’s effect on MJ SFR were also consistent. Therefore, 
only a brief explanation is given in this study. For more 
information, please refer to Xing et al. (2017).  

5 A P-E Prediction Model for MJ  
Subtropical Frontal Rainfall  
Based on the discussion in Section 4, three physical 

predictors have been identified: ARCSIC, EUASLP, and 
TPSST. The precise definition of each predictor is pre-
sented in Table 1. The CCs of ARCSIC, EUASLP, and 
TPSST, as they relate to SFRI, were 0.58, 0.40, and 0.45, 
respectively, which are all statistically significant at the 
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Fig.6 Correlation maps of (a) DJ mean; (b) FMA mean; and (c) MJ mean SLP (shading), SST (contours over ocean) and 2 

m air temperature (contours over land) based on the predictor EUASLP. Red solid contours indicate a positive correlation 
coefficient between SST/T2M and EUASLP starting from 0.2 with an interval of 0.2. A similar interval applies to the blue 
line, except for a negative correlation. (d) Same as in (c) but for MJ mean precipitation (shading) and 850 hPa winds (vectors). 

95% confidence level based on a Student’s t test (Table 2). 
The CCs among the predictors are also summarized in 
Table 2. All predictors were highly independent of each 
other.  

Table 2 Correlation coefficients with predict and  
predictors for the period 1979–2016 

 SFRI ARCSIC EUASLP TPSST 

ARCSIC 0.58 1.0 0.28 0.14 
EUASLP 0.40 − 1.0 0.02 
TPSST 0.45 − − 1.0 

 
To estimate the MJ SFR prediction, we developed a P- 

E prediction model using the predictors shown in Table 1. 
Due to their relative independence, all three predictors 
were selected by stepwise regression and given the F-test 
at the 95% confidence level. The prediction (simulation) 
equation used was  

0.45 0.27 0.39SFRI ARCSIC EUASLP TPSST      . 
(1) 

All predictors involved information before or during 
the preceding January, hence this model was a 3-month 
lead prediction model. The correlation between the simu-
lation and the observation of the SFRI was 0.78. Among 
the above precursors, the abnormal ASI had the largest 
contribution to SFRI variability, implying that ASI may 
be a valuable predictor for long-lead seasonal prediction 
of climate variation over EA in summer. 

To test the predictive capability of the P-E model, a 
cross-validation (Michaelsen, 1987) was performed to hind- 
cast the SFRI (1979–2016). To prevent an overfitting pro- 
blem, we chose a leaving-three-out strategy (10% of the 
whole hindcast period). The relevant procedures were as 

follows: the cross-validation method systematically de-
leted three years from the period 1979–2016, derived a 
forecast model from the remaining years, and tested it on 
the deleted cases. The cross-validated estimates of the 
SFRI are shown in Fig.7. The CC between the observa-
tion (black line in Fig.7) and the 38-year cross-validated 
estimates of the P-E model (red line in Fig.7) was 0.72.  

To confirm whether the P-E model is practically useful, 
we used 1979–2006 data as a training period to derive a 
prediction equation, and then made independent forecasts 
for the period 2007–2016 (green line in Fig.7). The inde-
pendent forecast CC skill was 0.69. This independent test 
could rigorously reflect the ability of the P-E prediction 
model in the SFRI forecast. The high skill of the inde-
pendent forecast indicated that the P-E model can be used 
to make real time forecasts.  

If we established the prediction model without the 
ARCSIC and performed the same hindcast, the CC be-
tween the observation and the 38-year cross-validated 
estimates would have been 0.49 (blue line in Fig.7). This 
indicates that the ASI anomaly does significantly improve 
the seasonal prediction skill of the P-E model.  

To assess the performance of the rainfall prediction by 
numerical models, we used retrospective forecasts of four 
advanced atmosphere-ocean coupled models with initial 
conditions in early May from 1979 to 2010, including the 
National Center for Environmental Prediction (NCEP) CFS 
version 2 (Saha et al., 2014), the Australia Bureau of Mete- 
orology (ABOM) POAMA version 2.4 (Hudson et al., 
2011), the Geophysical Fluid Dynamics Laboratory (GFDL) 
CM version 2.1 (Delworth et al., 2006), and the Frontier 
Research Center for Global Change (FRCGC) SINTEX-F 
model (Luo et al., 2005). It has been generally recognized 
that multi-model ensemble (MME) prediction has con-
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siderably higher skill than individual model prediction 
(Lee et al., 2010). To obtain higher skill, we used the 
MME prediction by simply averaging the four coupled 
models’ ensemble mean anomalies after removing their 
own climatology. The CC between the observation and the 
32-year MME hindcast was only 0.47. The MME hind- 
cast skill was lower than the P-E model prediction skill, 
implying the advantage of the P-E model in seasonal pre-
diction of subtropical climate variability. 

 

Fig.7 Prediction skill for the physical-empirical prediction 
shown by the time series of observation (black) and cross- 
validated predictions using three 3-month lead predictors 
(red) over 38 years. The cross validation was done by tak-
ing three years out from around the predicted year. The 
cross-validated correlation skill was 0.72. The 2007–2016 
values (green) are independent test predictions, which had a 
forecast temporal correlation skill of 0.69 when the model 
was built using data in the training period of 1979–2006. 
The hindcasted time series without Arctic sea ice signals 
is also shown by the blue line for comparison.  

6 Conclusions 
EA subtropical frontal rainfall (SFR) is a defining fea-

ture of the Asian monsoon. Prediction of MJ mean EA 
SFR is of central importance as it affects a large number 
of populations. The present study aimed to predict MJ EA 
SFR at a longer-lead time using ASI anomalies as a po-
tential predictor as well as the climate systems originating 
from the tropics to the mid-latitudes for the 38-year pe-
riod of 1979–2016.  

In order to measure the strength of the MJ SFR, an 
SFRI was defined using the leading PC of an EOF analy-
sis applied to MJ rainfall anomalies over EA. This index 
presents an enhancement of the climatological MJ mean 
rain band stretching from southern China to south of Ja-
pan. Enhancement of the WPSH and the Okhotsk High 
and anomalous lower sea level pressure (SLP) over east-
ern China are featured circulation anomalies that have 
close relationships with a strong MJ SFRI.  

Based on their circulation characteristics, three physi-
cal precursors from the preceding autumn and winter 
have been identified. The first precursor (ARCSIC) is a 
dipolar SIC anomaly in the Arctic during the preceding 
autumn (October–November mean, ON), which signifies 
a negative NAO and tripole SSTA over the northern Atlan-
tic that can persist until early summer. The tripole SSTA 
may excite downstream development of subpolar telecon-
nections, raising the pressure over the Okhotsk Sea. The 

second precursor is a dipolar SLP anomaly during the 
preceding winter (DJ) over northern Eurasia and EA 
(EUASLP), which interacts with warming SSTs in the 
warm pool region and leads to a persistent lower SLP 
over EA. This favors enhanced local rainfall during early 
summer. The third predictor is the tripole SSTA in the 
tropical Pacific in DJ (TPSST), which signifies enhance-
ment of WPSH, which, in turn, can persist until early 
summer through anticyclone-SST dipole interaction. 

On the basis of the dynamical processes, a physical- 
empirical (P-E) model was established to predict the MJ 
SFRI by combining the three predictors. All predictors 
involved information before or during the preceding Janu-
ary, thus this model is a 3-month lead prediction model. 
Cross-validated hindcasting was performed for the 1979– 
2016 period. The CC skill reached 0.72, which showed a 
notably higher prediction skill than the MME hindcast of 
four state-of-the-art models (0.47). It suggests that the 
predictive power of the current dynamical models leaves 
much room to improve. 

Although previous studies have indicated that long- 
lead seasonal prediction would be difficult and skills 
would decrease as lead time increased, the present 3- 
month lead hindcast skill using ASI as a new predictor 
was comparable to that of the 0-month lead prediction 
model established by Xing et al. (2017), both being 0.72. 
By examining the normalized regression coefficient of the 
P-E model, we could directly compare the relative con-
tribution of each predictor. Among the above three pre-
cursors, ARCSIC had the largest contribution to the long- 
lead prediction. Furthermore, the cross-validated hindcast 
CC skill decreased sharply to 0.49 without the ASI pre-
dictor. These results all indicate that the ASI anomaly 
does significantly improve the seasonal prediction skill of 
the P-E model, and that it is a valuable predictor, espe-
cially in terms of long-lead prediction.  

In a previous study, we had established a P-E model for 
MJ southern China rainfall prediction at a 2-month lead 
time for the period of 1979–2012 (Yim et al., 2014). The 
SFRI index in our work, however, offers a detailed spatial 
structure of the rainfall anomalies. Furthermore, the pre-
sent work pays more attention to the contribution of ASI 
on EA climate variation. A longer-lead time prediction is 
established involving anomalous Arctic climate, and the 
targeting period expands to 2016.  

Understanding the physical linkages between predic-
tands and predictors is crucial for selecting predictors and 
improving prediction skills. The principles of searching 
for relatively independent and complimentary predictors 
should be useful for a reduction in predictive skill drop 
(Wang et al., 2015). While the causative processes link-
ing the predictors and the SFRI have been speculated, 
they are, by no means, rigorous proofs; thus, further, well- 
designed numerical experiments with credible climate 
models are needed to validate or refute the mechanism 
proposed in the present study. 

Acknowledgements 
The work was supported by the Global Change Research 



XING et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2019 18: 542-552 

 

551

Program of China (No. 2015CB953904), and the National 
Natural Science Foundation of China (No. 41575067). 

References 
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., 

Miller, J. S., and Scott, J. D., 2004. The atmospheric response 
to realistic Arctic sea ice anomalies in an AGCM during win-
ter. Journal of Climate, 17 (5): 890-905. 

Chen, G. T. J., 1983. Observational aspects of the Meiyu phe-
nomena in subtropical China. Journal of Meteorological So-
ciety of Japan, 61: 306-312.  

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., 
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., 
Bauer, D. P., and Bechtold, P., 2011. The ERA–Interim re-
analysis: Configuration and performance of the data assimila-
tion system. Quarterly Journal of the Royal Meteorological 
Society, 137 (656): 553-597.  

Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, 
V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., 
Dunne, K. A., and Durachta, J. W., 2006. GFDL’s CM2 global 
coupled climate models. Part I: Formulation and simulation 
characteristics. Journal of Climate, 19 (5): 643-674.  

Deser, C., Magnusdottir, G., Saravanan, R., and Phillips, A., 
2004. The effects of North Atlantic SST and sea ice anoma-
lies on the winter circulation in CCM3. Part II: Direct and in-
direct components of the response. Journal of Climate, 17 (5): 
877-889. 

Deser, C., Tomas, R., Alexander, M., and Lawrence, D., 2010. 
The seasonal atmospheric response to projected Arctic sea ice 
loss in the late twenty-first century. Journal of Climate, 23 (2): 
333-351. 

Ding, Y., 1992. Summer monsoon rainfalls in China. Journal of 
the Meteorological Society of Japan, 70 (1B): 373-396.  

Gu, W., Li, C., Li, W., Zhou, W., and Chan, J. C., 2009a. Inter-
decadal unstationary relationship between NAO and East 
China’s summer precipitation patterns. Geophysical Research 
Letters, 36 (13): L13702.  

Gu, W., Li, C., Wang, X., Zhou, W., and Li, W., 2009b. Linkage 
between mei-yu precipitation and North Atlantic SST on the 
decadal timescale. Advances in Atmospheric Sciences, 26 (1): 
101-108.  

Holland, M. M., Bitz, C. M., and Tremblay, B., 2006. Future 
abrupt reductions in the summer Arctic sea ice. Geophysical 
Research Letters, 33 (23): L32503.  

Honda, M., Inoue, J., and Yamane, S., 2009. Influence of low 
Arctic sea-ice minima on anomalously cold Eurasian winters. 
Geophysical Research Letters, 36 (8): L08707. 

Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., 
Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., 
and Zhang, H. M., 2015. Extended reconstructed sea surface 
temperature version 4 (ERSST. v4). Part I: Upgrades and in-
tercomparisons. Journal of Climate, 28 (3): 911-930. 

Hudson, D., Alves, O., Hendon, H. H., and Wang, G., 2011. The 
impact of atmospheric initialisation on seasonal prediction of 
tropical Pacific SST. Climate Dynamics, 36 (5-6): 1155-1171. 

Huffman, G. J., Bolvin, D. T., and Adler, R. F., 2011. Last up-
dated GPCP Version 2.2 combined precipitation data set. 
WDC-A, NCDC, Asheville, NC (2011). Dataset accessed at 
http://www.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html. 

Kumar, A., Perlwitz, J., Eischeid, J., Quan, X., Xu, T., Zhang, T., 
Hoerling, M., Jha, B., and Wang, W., 2010. Contribution of 
sea ice loss to Arctic amplification. Geophysical Research 
Letters, 37 (21): L21701. 

Lau, N. C., Nath, M. J., and Wang, H., 2004. Simulations by a 
GFDL GCM of ENSO-related variability of the coupled at-
mosphere-ocean system in the East Asian monsoon region. In: 
East Asian Monsoon, World Scientific Series on Meteorology 
of East Asia No. 2. Chang, C. P., ed., World Scientific, Sin-
gapore, 271-300. 

Lee, J. Y., Lee, S. S., Wang, B., Ha, K. J., and Jhun, J. G., 2013. 
Seasonal prediction and predictability of the Asian winter 
temperature variability. Climate Dynamics, 41 (3-4): 573-587. 

Lee, J. Y., Wang, B., Kang, I. S., Shukla, J., Kumar, A., Kug, J. 
S., Schemm, J. K. E., Luo, J. J., Yamagata, T., Fu, X., and 
Alves, O., 2010. How are seasonal prediction skills related to 
models’ performance on mean state and annual cycle? Cli-
mate Dynamics, 35 (2-3): 267-283. 

Lee, S. S., Lee, J. Y., Ha, K. J., Wang, B., and Schemm, J. K. E., 
2011. Deficiencies and possibilities for long-lead coupled 
climate prediction of the Western North Pacific-East Asian 
summer monsoon. Climate Dynamics, 36 (5-6): 1173-1188. 

Li, B., and Zhou, T., 2011. ENSO-related principal interannual 
variability modes of early and late summer rainfall over East 
Asia in SST-driven AGCM simulations. Journal of Geophy- 
sical Research, 116: 1-15. 

Li, J., and Wang, J. X., 2003a. A modified zonal index and its 
physical sense. Geophysical Research Letters, 30 (12): 1632.  

Li, J., and Wang, J. X., 2003b. A new North Atlantic Oscillation 
index and its variability. Advances in Atmospheric Sciences, 
20 (5): 661-676. 

Li, J., and Wu, Z., 2012. Importance of autumn Arctic sea ice to 
northern winter snowfall. Proceedings of the National Acad-
emy of Sciences, 109 (28): E1898-E1898. 

Li, J., and Wang, B., 2016. How predictable is the anomaly pat-
tern of the Indian summer rainfall? Climate Dynamics, 46 (9- 
10): 2847-2861.  

Liu, J., Curry, J. A., Wang, H., Song, M., and Horton, R. M., 
2012. Impact of declining Arctic sea ice on winter snowfall. 
Proceedings of the National Academy of Sciences, 109 (11): 
4074-4079.  

Liu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H. M., 
Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M., and 
Woodruff, S. D., 2015. Extended reconstructed sea surface 
temperature version 4 (ERSST. v4): Part II. Parametric and 
structural uncertainty estimations. Journal of Climate, 28 (3): 
931-951. 

Luo, J. J., Masson, S., Behera, S., Shingu, S., and Yamagata, T., 
2005. Seasonal climate predictability in a coupled OAGCM 
using a different approach for ensemble forecasts. Journal of 
climate, 18 (21): 4474-4497. 

Magnusdottir, G., Deser, C., and Saravanan, R., 2004. The ef-
fects of North Atlantic SST and sea ice anomalies on the 
winter circulation in CCM3. Part I: Main features and storm 
track characteristics of the response. Journal of Climate, 17 
(5): 857-876. 

Michaelsen, J., 1987. Cross-validation in statistical climate fore- 
cast models. Journal of Climate and Applied Meteorology, 26 
(11): 1589-1600. 

North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J., 1982. 
Sampling errors in the estimation of empirical orthogonal 
functions. Monthly Weather Review, 110 (7): 699-706. 

Oh, H., and Ha, K. J., 2015. Thermodynamic characteristics and 
responses to ENSO of dominant intraseasonal modes in the 
East Asian summer monsoon. Climate Dynamics, 44 (7-8): 
1751-1766. 

Panofsky, H. A., and Brier, G. W., 1968. Some Applications of 
Statistics to Meteorology. Pennsylvania State University Press, 
University Park, PA, 1-224. 



XING et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2019 18: 542-552 

 

552 

Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., 
Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A., 
2003. Global analyses of sea surface temperature, sea ice, and 
night marine air temperature since the late nineteenth century. 
Journal of Geophysical Research: Atmospheres, 108 (D14): 
4407.  

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., 
Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., and Ek, 
M., 2014. The NCEP climate forecast system version 2. Jour-
nal of Climate, 27 (6): 2185-2208. 

Serreze, M. C., Holland, M. M., and Stroeve, J., 2007. Perspec-
tives on the Arctic’s shrinking sea-ice cover. Science, 315 
(5818): 1533-1536. 

Singarayer, J. S., Bamber, J. L., and Valdes, P. J., 2006. Twenty- 
first-century climate impacts from a declining Arctic sea ice 
cover. Journal of Climate, 19 (7): 1109-1125. 

Su, Q., Lu, R., and Li, C., 2014. Large-scale circulation anoma-
lies associated with interannual variation in monthly rainfall 
over South China from May to August. Advances in Atmos-
pheric Sciences, 31 (2): 273-282. 

Tao, S. Y., and Chen, L., 1987. A review of recent research on 
the East Asian summer monsoon in China. In: Monsoon Me-
teorology. Chang, C. P., and Krisnamurti, T. N., eds., Oxford 
University Press, Oxford, 60-92. 

Wang, B., and Ho, L., 2002. Rainy season of the Asian-Pacific 
summer monsoon. Journal of Climate, 15 (4): 386-398. 

Wang, B., Lee, J. Y., and Xiang, B., 2015a. Asian summer mon-
soon rainfall predictability: A predictable mode analysis. 
Climate Dynamics, 44 (1-2): 61-74. 

Wang, B., Lee, J. Y., Kang, I. S., Shukla, J., Kug, J. S., Kumar, 
A., Schemm, J., Luo, J. J., Yamagata, T., and Park, C. K., 
2008. How accurately do coupled climate models predict the 
leading modes of Asian-Australian monsoon interannual vari- 
ability? Climate Dynamics, 30 (6): 605-619. 

Wang, B., Liu, J., Yang, J., Zhou, T., and Wu, Z., 2009. Distinct 
principal modes of early and late summer rainfall anomalies 
in East Asia. Journal of Climate, 22 (13): 3864-3875. 

Wang, B., Wu, R., and Fu, X., 2000. Pacific-East Asian telecon-
nection: How does ENSO affect East Asian climate? Journal of 
Climate, 13 (9): 1517-1536. 

Wang, B., Wu, R., and Lau, K. M., 2001. Interannual variability 
of the Asian summer monsoon: Contrasts between the Indian 
and the western North Pacific-East Asian monsoons. Journal 
of Climate, 14 (20): 4073-4090. 

Wang, B., Xiang, B., and Lee, J. Y., 2013. Subtropical high pre-
dictability establishes a promising way for monsoon and 
tropical storm predictions. Proceedings of the National Acad-
emy of Sciences, 110 (8): 2718-2722. 

Wang, B., Xiang, B., Li, J., Webster, P. J., Rajeevan, M. N., Liu, 
J., and Ha, K. J., 2015b. Rethinking Indian monsoon rainfall 
prediction in the context of recent global warming. Nature 
Communications, 6: 7154. 

Wang, M., and Overland, J. E., 2009. A sea ice free summer Arc-
tic within 30 years? Geophysical Research Letters, 36 (7): L07 
502.  

Wu, B., Su, J., and Zhang, R., 2011. Effects of autumn–winter 
Arctic sea ice on winter Siberian High. Chinese Science Bul-

letin, 56 (30): 3220-3228. 
Wu, B., Zhang, R., Wang, B., and D’Arrigo, R., 2009a. On the 

association between spring Arctic sea ice concentration and 
Chinese summer rainfall. Geophysical Research Letters, 36 
(9): L09501.  

Wu, R., and Wang, B., 2002. A contrast of the East Asian summer 
monsoon – ENSO relationship between 1962–77 and 1978– 
93. Journal of Climate, 15 (22): 3266-3279. 

Wu, Z., Li, J., Jiang, Z., and He, J., 2011. Predictable climate 
dynamics of abnormal East Asian winter monsoon: Once-in- 
a-century snowstorms in 2007/2008 winter. Climate Dynam-
ics, 37 (7-8): 1661-1669. 

Wu, Z., Li, X., Li, Y., and Li, Y., 2016. Potential influence of 
Arctic sea ice to the interannual variations of East Asian 
spring precipitation. Journal of Climate, 29 (8): 2797-2813. 

Wu, Z., Wang, B., Li, J., and Jin, F. F., 2009b. An empirical 
seasonal prediction model of the East Asian summer monsoon 
using ENSO and NAO. Journal of Geophysical Research: 
Atmospheres, 114 (D18): D18120.  

Xing, W., and Wang, B., 2017. Predictability and prediction of 
summer rainfall in the arid and semi-arid regions of China. 
Climate Dynamics, 49 (1-2): 419-431. 

Xing, W., Wang, B., and Yim, S. Y., 2016. Peak-summer East 
Asian rainfall predictability and prediction part I: Southeast 
Asia. Climate Dynamics, 47 (1-2): 1-13.  

Xing, W., Wang, B., Yim, S. Y., and Ha, K. J., 2017. Predictable 
patterns of the May–June rainfall anomaly over East Asia. 
Journal of Geophysical Research: Atmospheres, 122 (4): 
2203-2217. 

Yim, S. Y., Wang, B., and Xing, W., 2014. Prediction of early 
summer rainfall over South China by a physical-empirical 
model. Climate Dynamics, 43 (7-8): 1883-1891. 

Yim, S. Y., Wang, B., and Xing, W., 2016. Peak-summer East 
Asian rainfall predictability and prediction part II: Extra- 
tropical East Asia. Climate Dynamics, 47 (1-2): 15-30. 

Yuan, Y., Yang, H., Zhou, W., and Li, C., 2008a. Influences of 
the Indian Ocean Dipole on the Asian summer monsoon in 
the following year. International Journal of Climatology, 28 
(14): 1849-1859. 

Yuan, Y., Zhou, W., Chan, J. C., and Li, C., 2008b. Impacts of 
the basin-wide Indian Ocean SSTA on the South China Sea 
summer monsoon onset. International Journal of Climatology, 
28 (12): 1579-1587. 

Yun, K. S., Seo, K. H., and Ha, K. J., 2010. Interdecadal change 
in the relationship between ENSO and the intraseasonal os-
cillation in East Asia. Journal of Climate, 23 (13): 3599-3612. 

Zhang, L., and Li, T., 2017. Physical processes responsible for 
the interannual variability of sea ice concentration in Arctic in 
boreal autumn since 1979. Journal of Meteorological Re-
search, 31 (3): 468-475. 

Zhou, T., Gong, D., Li, J., and Li, B., 2009. Detecting and un-
derstanding the multi-decadal variability of the East Asian 
Summer Monsoon – Recent progress and state of affairs. Me- 
teorologische Zeitschrift, 18 (4): 455-467. 

Zuo, J., Ren, H. L., Wu, B., and Li, W., 2016. Predictability of 
winter temperature in China from previous autumn Arctic sea 
ice. Climate Dynamics, 47 (7-8): 2331-2343.

(Edited by Chen Wenwen) 


