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ABSTRACT

The rapid increase in open-water surface area in the Arctic, resulting from sea ice melting during the

summer likely as a result of global warming, may lead to an increase in fog [defined as a cloud with a base

height below 1000 ft (;304m)], whichmay imperil ships and small aircraft transportation in the region. There

is a need for monitoring fog formation over the Arctic. Given that ground-based observations of fog over

Arctic open water are very sparse, satellite observations may become the most effective way for Arctic fog

monitoring. We developed a fog detection algorithm using the temperature difference between the cloud top

and the surface, called ›T in this work.A fog event is said to be detected if ›T is greater than a threshold, which

is typically between 26 and 212K, depending on the time of the day (day or night) and the surface types

(open water or sea ice). We applied this method to the coastal regions of Chukchi Sea and Beaufort Sea near

Barrow, Alaska (now known as Utqia _gvik), during the months of March–October. Training with satellite

observations between 2007 and 2014 over this region, the ›T method can detect Arctic fog with an optimal

probability of detection (POD) between 74% and 90% and false alarm rate (FAR) between 5% and 17%.

These statistics are validated with data between 2015 and 2016 and are shown to be robust from one subperiod

to another.

1. Introduction

The correlation between Arctic sea ice loss and the

increase of cloud cover has been studied extensively

(Eastman andWarren 2010; Intrieri et al. 2002; Kay and

Gettelman 2009; Schweiger et al. 2008; Wang and Key

2005). The increase in the open-water surface area in the

Arctic leads to an increase of heat and moisture ex-

change between the ocean and the atmosphere that fa-

vors cloud formation in nonsummer seasons (Morrison

et al. 2018), which would further accelerate the sea ice

loss (Cronin and Tziperman 2015; Eastman and Warren

2010; Palm et al. 2010; Shupe and Intrieri 2004; Vavrus

et al. 2009). Palm et al. (2010) showed that the total

cloud cover over the Arctic has increased by;0.5% per

1% decrease in sea ice extent. The reverse also holds:

less cloudy (i.e., less longwave heating) winters may

help recover lost sea ice, which was shown to be the

case for the sea ice increase in the 2013 Arctic summer

(Liu and Key 2014). However, our understanding of

how the vertical cloud distribution changes is not cer-

tain. Schweiger et al. (2008) showed that using reanalysis

and satellite data, the sea ice retreat during autumn was

linked to a decrease in low-level cloud and an increaseCorresponding author: King-Fai Li, king-fai.li@ucr.edu
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in midlevel cloud near ice margins due to an increase

in surface temperature and a subsequent decrease in

static stability. But Kay and Gettelman (2009) disagreed,

finding more low-level cloud over open water during

autumns of 2006–08 in the Arctic. Their results have

been confirmed by Morrison et al. (2018) using the

Cloud–Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO), who suggested that the ocean–

atmosphere exchange of heat and moisture during au-

tumn, and probably during other nonsummer seasons,

enhances the formation of clouds over open water. There

have also been indications that the occurrence of Arctic

low-level cloud over open water is increasing with global

warming (Eastman and Warren 2010; Palm et al. 2010).

The increase of open-water area allows new marine

traffic routes in the Arctic region (Cressey 2011; Lasserre

and Pelletier 2011; Stephenson et al. 2011). According to

the 2013 report by the U.S. Coast Guard,;1 million tons

of freight ships traveled through the Bering Strait in 2012,

which more than double the amount of ship traffic in

2008. Based on the simulated sea ice in seven climate

models, Smith and Stephenson (2013) predicted that by

the mid-twenty-first century, the Northwest Passage will

be navigable by open-water vessels and the central Arctic

will be navigable for moderate icebreakers. The increas-

ing occurrence of fog and low stratus discussed above

would greatly reduce the visibility and pose danger to

aviation and shipping activities in the Arctic region

(Kora�cin et al. 2014). Historical Arctic fog and low stratus

reports rely on surface observations that are widely dis-

tributed over the Eurasian continent, and are signifi-

cantly less over North America and the Arctic Ocean

(Eastman and Warren 2010; Warren et al. 2007).

There has been spaceborne operational monitoring

of fog and low stratus at high latitudes over Alaska

using the Geostationary Operational Environmental

Satellite-15 (GOES-15) (publicly available at https://

www.star.nesdis.noaa.gov/smcd/opdb/aviation/fog.html),

but there has not been any spaceborne operational

monitoring over the Arctic Ocean.

We aim to devise a satellite-based detection algorithm

for near-surface clouds over the Arctic sea during the

summertime. Fog and low stratus, which are very low-

level clouds (a few hundred meters thick) near the

ground, pose danger to air (especially sea planes) and

marine traffic in the Arctic region (Kora�cin et al. 2014).

However, developing robust satellite measurements for

these cloud types is challenging, mainly due to the finite

vertical resolution (generally much coarser than 100m)

of associated spectral measurements and low thermal

contrasts between surface and low-level cloud layers

over polar regions. Detection of fog alone is even more

difficult. TheWorldMeteorologicalOrganization (WMO)

defines fog based on a horizontal visibility of less than 1km

(WMO 2005), which can hardly be used in satellite-based

observations. From satellite perspectives, one detects fog

from a top-down approach. Using spectral infrared and

visible measurements, Bendix et al. (2005), Cermak and

Bendix (2011), and Yi et al. (2016, 2015) attempted to

identify fog among other cloud types in the satellite im-

ages using the zero-cloud-base-height definition, where

the cloud-base height was defined by cloud-top height

minus cloud thickness. The cloud thickness was estimated

indirectly based on some extra knowledge such as cloud

optical depth. There have also been other attempts using

microphysical properties such as liquid and solid phases and

cloud droplet radii to separate fog from other cloud types

but the separation is not clear (see, e.g., Baldocchi and

Waller 2014; Bendix et al. 2005; Cho et al. 2015). Egli et al.

(2018) used the cloud-base information from ground ob-

servations to reduce the errors in satellite fog retrievals.

Lidar measurements, such as the Cloud–Aerosol Lidar

with Orthogonal Polarization (CALIOP) instrument

aboard CALIPSO, may provide direct estimates of

cloud-base heights, but Wu et al. (2015) showed that

the differentiation between surface and ground-touching

fog in the CALIOP measurements may be challenging.

Ellrod (2003) suggested that the cloud-top tempera-

ture of a cloud layer near the surface might be closer

to the surface temperature because of a thermal in-

version in the cloud than outside the cloud. Therefore,

he proposed using the difference between the bright-

ness temperature at 10.7mm and the underlying surface

temperature to detect a cloud layer with a base below

1000 ft (or 304m), which is important to aviation safety

due to the fact that instrument flight rules would have

to be enforced during takeoff and landing if there is a

cloud layer below 1000 ft. In this paper, we shall refer to

this difference as the cloud-top–sea surface temperature

difference and denote it as ›T (see section 2). Ellrod

(2003) was interested in both fog and low cloud. Fol-

lowing Lee et al. (1997), we shall treat fog and low cloud

as one meteorological object and we refer to such an

object to as ‘‘fog/low cloud.’’ The ›T method has been

adopted in several studies (Gultepe et al. 2007; Wilcox

2017;Wu andLi 2014) as an initial step to identify fog/low-

cloud scenes at midlatitudes, which are then further sepa-

rated into fog scenes and low cloud scenes with the help of

other constraints (e.g., brightness temperature at 3.7mm).

Application of this method to the polar region is much

more challenging and so far there has not been any re-

ported study. Our goal of this work is to demonstrate that

the ›T method can also be used to identify fog/low cloud

at polar latitudes. Further separation of fog and low cloud

at polar latitudes, however, is beyond our scope of un-

derstanding and will be deferred to future publications.
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While lidar measurements provide direct measure-

ments of cloud-base height for defining fog/low cloud,

we emphasize that infrared-based detection, such as the

›T method, offers a few advantages: 1) Lidar measure-

ments only allow strictly downward light path (i.e., 08
at nadir) with a swath width of order 100m. Therefore

the spatial coverage of the lidar measurements is sparse

and is not ideal for operational weather monitoring. In

contrast, infrared measurements, such as the Moderate

Resolution Imaging Spectroradiometer (MODIS), have

wide across-track scanning geometry (of order 1000km)

that provides spatiotemporally dense coverage of the

globe [see Fig. 1 of Holz et al. (2008) for a comparison

of the collocated and CALIPSO pixels]. Figure 1 shows

the;30 swaths of the A-Train (which includes CALIPSO

and MODIS in its constellation) on 1 June 2018, which

converge toward the pole. The wide across-track

MODIS scans provide a full coverage of the polar re-

gion;30 times per day; 2) there are currently a number

of spaceborne infrared measurements [such as the

GOES series, the Atmospheric Infrared Sounder (AIRS)

and Infrared Atmospheric Sounding Interferometer

(IASI)] that can be used to cross validate the fog de-

tection algorithm; and 3) historical infrared measure-

ments date back to late 1970s [by the measurements of

NOAA’s Advanced Very High Resolution Radiome-

ter (AVHRR)], so that Arctic fog/low cloud in the past

few decades may also be estimated using these histor-

ical measurements.

The ›T method relies on a threshold to define the

presence of fog/low cloud. In the search of the threshold

algorithm, Ellrod (2003) used surface-based observa-

tions as prior information to define fog/low-cloud scenes

in the satellite images. However, surface observations

over the Arctic Ocean are scarce. Instead, we will use

the cloud-base height measurements by CALIPSO as

prior information to define fog/low-cloud scenes for

the purpose of algorithm development. The ›T thresh-

olds will be derived using theMODIS along-track pixels

that are collocated with theCALIPSO pixels at 08 nadir.
Due to the significantly different footprint geometries

(MODIS’s 1 km versus CALIPSO’s 333m) and the or-

bital time gap (;73 s) between MODIS and CALIPSO,

cloud structures (vertical or horizontal) in the field of

views of the collocated pixels may also be different.

Therefore, we must carefully select the MODIS and

CALIPSO pixels to ensure that both instruments ‘‘see’’

the same cloud. The details of data selection will be

described in section 2c. Once these ›T thresholds are

derived, they can then be applied generally for fog/low-

cloud detection to regions where there are cloud-top

temperature measurements only, such as the MODIS

across-track pixels. A shortcoming of our fog/low-cloud

detection algorithm is that MODIS or other infra-

red measurements cannot probe through multilayered

clouds. Also, the CALIPSO’s lidar signal that we use for

validation is strongly attenuated through thick clouds.

Therefore, the verification statistics against CALIPSO

can be derived only when single-layered clouds are pres-

ent. For multilayered clouds, the false alarm rate (FAR)

may be higher than the nominal value (5%–17%) to be

derived in this study, but is unknowable at present.

The rest of the paper is organized as follows. In section

2, we describe an Arctic fog/low-cloud detection method

and describe the datasets to be used for the detection.

Section 3 presents our derivation of the ›T thresholds over

four different polar scenarios. An example of fog/low-

cloud detection based on the ›Tmethod is also presented.

Comparison with available cruise in situ measurements is

also provided. Section 4 summarizes our results.

2. Data and method

a. ›T definition

Ellrod’s (2003) infrared-based ›T method will be

modified for the Arctic environment and for day as well

as night time fog/low-cloud detection in this paper. We

follow Zhang and Yi (2013) to define ›T as cloud-top

temperature minus surface temperature:

›T5 cloud-top temperature2 surface temperature,

(1)

FIG. 1. The A-Train swath paths (blue lines) over the Arctic on

1 June 2018. TheMODIS andCALIPSO instruments are members

of the A-Train satellite constellation.
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Equation (1) differs from Ellrod’s (2003) definition by a

negative sign. According to Ellrod (2003), a cloud object

over the United States is considered fog/low cloud if the

surface temperature is not 4K warmer than the cloud-

top temperature. Therefore, the ›T threshold is 24K

according to Eq. (1) in Ellrod’s (2003) case: fog/low

cloud is said to be detected if ›T $ 24K. Ellrod (2003)

applied the ›T method for nighttime fog/low-cloud de-

tection. Zhang andYi (2013) showed that the ›Tmethod

is applicable to the Yellow Sea at midlatitudes, dur-

ing the daytime, with a season-dependent ›T threshold

ranging from 23 to 24.5K. With modifications to the

detection threshold, we will show that the ›T method

can also detect fog/low cloud during the Arctic daytime

over ocean and ice surfaces.

Zhang and Yi (2013) also showed that instead of using

instantaneous sea surface temperature, the climatolog-

ical mean of the sea surface temperature may serve to

detect sea fog with satisfactory accuracy, thereby greatly

simplifying the detection algorithm. To carry out a study

about fog/low-cloud changes over theArctic, in contrast,

weneed a time varying sea surface temperature to account

for year-to-year variations in sea ice cover. Therefore, in

this work, we will use MODIS’s sea surface temperature

to increase the accuracy of the fog/low-cloud detection.

b. MODIS data

Ellrod (2003) used the GOES measurements of the

10.7-mm brightness temperature as a proxy for the

cloud-top temperature. Here, we use channel 31 (10.78–

11.28mm) brightness temperature measured by the

MODIS (Ackerman et al. 1998) aboard the Aqua sat-

ellite platform as the proxy of the cloud-top tempera-

ture. MODIS channel 31 has a spatial resolution of 1 km.

The MODIS across-track swath width is 2030km.

The period to be studied includes the months March

to October from 2007 to 2016. MODIS collection 6

data are used. The geolocation information and the

solar zenith angle in the MYD03 product are used. The

solar zenith angle is used to determine the day (when

jSZAj # 908) or night (when jSZAj $ 908) of the

measurement. The brightness temperature of channel

31 is obtained from the level 1 MYD021KM product.

Cloud-top height (to be used in sections 2c and 3c) and

surface temperature are obtained from the level 2

MYD06 product. The unobstructed field-of-view (FOV)

quality flag in the level 2 MYD35 cloud mask product

takes four possible values (0 for confident cloudy, 1 for

possibly cloudy, 2 for possibly clear, and 3 for confident

clear); we only use those MODIS footprints that have a

zero unobstructed FOV quality flag as cloudy scenes.

Over the Arctic Ocean, there may be areas of sea ice

adjacent to areas of openwater. In our calculations, we use

the four-times-daily reanalysis sea surface temperature

data (TMP:sfc) provided in the MYD06 product to define

open-water and sea ice regions. An open-water region is

defined when the MODIS surface temperature is above

271.35K (or, equivalently, 21.88C) while a sea ice region

is defined when the MODIS surface temperature is below

271.35K (Reynolds et al. 2007). (Figure 3 lists theMODIS

datasets that are involved in the fog detection.)

c. Prior fog/low-cloud knowledge from CALIPSO

The CALIPSO level 2 vertical feature mask (VFM)

product (CAL_LID_L2_VFM-Standard-V4-10) provides

the geolocation information (longitude, latitude, and al-

titude) along the swath path. Each nadir footprint has a

diameter of 330m. Below 8.2km, the vertical resolution

of the VFM product is 30m; between 8.2 and 20.2km, the

vertical resolution in 60m. Each layer is classified by the

variable ‘‘feature type’’ in the VFM product as ‘‘clear,’’

‘‘cloudy,’’ ‘‘aerosol,’’ ‘‘stratospheric feature,’’ ‘‘surface,’’

‘‘subsurface,’’ or ‘‘no signal.’’

Given aMODIS cloudy scene at nadir (i.e., 08 viewing
angle), there are 3 CALIPSO 330-m footprints that

overlap with the MODIS 1-km footprint. We pick the

CALIPSO footprint closest to the center of the MODIS

footprint and use the corresponding VFM product

to check whether the MODIS cloudy scene is also a

CALIPSO cloudy scene. Another strategy is to take the

average of the VFM products of all three CALIPSO

footprints to define a CALIPSO cloudy scene. We tested

both strategies and verified that the conclusions remain

unchanged. We ignored the CALIPSO scenes where

there is at least one aerosol layer in the VFM product.

Therefore, we only pick aerosol-free CALIPSO foot-

prints. The cloud-top height of a CALIPSO cloudy scene

is defined by the altitude of the highest VFM layer that

contains a cloud.

Both MODIS and CALIPSO are members of the

A-Train constellation and they both cross the equator

at around 0130 and 1330 LT, with MODIS (on Aqua)

;73 s ahead of CALIPSO. Due to differences in the

measurement techniques and geometries, prescreening

of the collocated MODIS and CALIPSO pixels is re-

quired to make sure that the observations of the two

instruments are inherently consistent with each other, as

discussed in section 1. First, we require that the cloud

object in the field of viewmust be single layered to avoid

undetected high clouds that may offset the MODIS

cloud-top temperatures. This screening is achieved by

using CALIPSO’s lidar measurement, which is capable

of detecting more than one cloud layers in the field of

view. Two or more cloudy levels, adjacent to each other,

are considered to form one continuous cloud layer. A

CALIPSO scan is said to detect a single-layered cloud,
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if there is only one continuous cloud layer. In addition,

if the single-layered cloud is optically thick (optical

depth $ 3), then the CALIPSO retrieval product re-

turns ‘‘no signal’’ below this cloud due to the strong lidar

attenuation. These cases are also excluded in the collo-

cation process in order to avoid missing fog scenes un-

derneath thick clouds.

Second, we require that the cloud-top heights from

MODIS and CALIPSO agree with each other to elim-

inate pixels containing cloud edges, especially those of

small high clouds over large low clouds that MODIS

is not able to resolve. Cloud-top height is one of very

few variables that are reported by both MODIS and

CALIPSO, which we can use for direct comparison.

However, sinceMODIS does not measure the cloud-top

height directly, the estimated cloud-top heights may

be subject to large errors, especially for very low-level

clouds. Early investigations suggest that the MODIS

cloud-top height for low cloud (#4 km) in the Arctic

region was biased high against the CALIPSO cloud-top

height by 0.3 km (Holz et al. 2008). For low clouds (be-

low 700hPa), the MODIS cloud-top height is converted

from the MODIS cloud-top temperature (determined

from channel 31), which requires reanalysis tempera-

ture profiles. In pixels where temperature inversion oc-

curs (which is the common case for fog formation), the

MODIS cloud-top height is assigned the same temper-

ature level above the inversion layer rather than the true

cloud-top height (Menzel et al. 2008), leading to a sig-

nificant margin of error in the MODIS cloud-top height

determination under polar conditions. Thus, collocated

MODIS andCALIPSO observations will be used only if

the following heuristic criterion is satisfied:

jH
MODIS

2H
CALIPSO

j# aH
MODIS

1 b , (2)

where a 5 20% and b 5 0.2 km. In other words, we se-

lect theMODIS observation only if the measured cloud-

top height agrees with the CALIPSO cloud-top height

within 20%.A larger a allowsmore collocated data to be

used but the discrepancy between the observed MODIS

and CALIPSO cloud structures would also be larger.

The constant b is meant to offset the MODIS bias. Note

that a 0.2-km bias for high cloud-top heights may rep-

resent a few percent of error only but a 0.2-km bias for

low cloud-top heights may represent a few dozen per-

cent. Therefore, high clouds are not sensitive to b but

low clouds are sensitive to b. Conversely, a 20% error in

the low cloud-top heights may be a few hundred meters

only but a 20% error in the high cloud-top heights may

be a few kilometers. Therefore, low clouds are not sen-

sitive to a, but high clouds are sensitive to a.Wehave tried

several values of a and b; the current values of a and b

are optimal choices such that about 20% of the collo-

cated MODIS–CALIPSO measurements are used for

the subsequent ›T assessments.

We used CALIPSO data for the period 2007–14 for

training and reserved 2015/16 for validation. We collect

the collocated MODIS and CALIPSO footprints over

the coastal regions of the Chukchi and the Beaufort Seas

during the period March–October from 2007 to 2014

(Fig. 2). The ›T values corresponding to the collocated

footprints are divided into ‘‘fog/low cloud’’ and ‘‘other

cloud’’ groups using the CALIPSO cloud-base heights.

The ‘‘fog/low cloud’’ group corresponds to cloud-base

heights less than 1000 ft and the ‘‘other cloud’’ group

corresponds to cloud-base heights greater than 1000 ft.

FIG. 2. The region over the Beaufort Sea and the Chukchi Sea (enclosed by the rectangle)

where collocatedMODIS andCALIPSO cloud observations in the extended summer (March–

October) during 2007–14 are used in this study.
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The histograms of the ›T values in these two groups are

obtained (cf. Fig. 4).

d. The proposed fog/low-cloud detection algorithm

Aflowchart of theArctic fog/low-cloud detection using

MODIS data is shown in Fig. 3: we first checkwhether the

observed scene is cloudy from the cloud mask. Then we

determine the day and night periods using the solar zenith

angle information and the surface type (openwater or sea

ice) using MODIS surface temperature. Last, we calcu-

late the ›T value using MODIS cloud-top temperature

and surface temperature.

3. Results and discussion

a. Derivation of the ›T thresholds with training data
between 2007 and 2014

Below, we will derive different ›T thresholds for dif-

ferent polar conditions.

We will analyze the ›T distributions for two time pe-

riods (nighttime and daytime observations) and over

two surface types (open water and sea ice). The division

between nighttime and daytime periods is to confirm if

the detection based on the infrared channel should be

insensitive to the presence of sunlight. The division be-

tween open-water and sea ice regions is to test whether

our method is affected by the surface types.

1) FIRST SCENARIO: DAYTIMEOVEROPENWATER

We begin the analysis with the MODIS daytime

(when solar zenith angle is less than 908) data over open

water. This is the most relevant situation for summer

open-water navigation. The corresponding the ›T data

will be denoted by ›Tday/water.

As explained in section 2c, a subset of MODIS foot-

prints is carefully selected to match with CALIPSO’s.

Of the observed ›Tday/water values, 114 622 are classified

into the ‘‘fog/low cloud’’ group (i.e., CALIPSO cloud-

base height# 1000 ft) and 168 434 of them are classified

into the ‘‘other cloud’’ group. Figure 4a shows the dis-

tributions of ›Tday/water in these two groups on 2-K bins.

The ›Tday/water distribution for fog/low cloud is slightly

negatively skewed, ranging from210 to 4K with a peak

at23K. The ›Tday/water distribution for the ‘‘other cloud’’

group ranges from 240 to 22K with a peak at 213K.

Figure 4a thus suggests that the ›Tday/water threshold

should lie between the peaks of the two distributions

(i.e., between 23 and 213K). To search for the

threshold quantitatively, we have tried several thresh-

olds along the x axis in Fig. 4a and picked the threshold

that ‘‘best’’ identifies the fog/low-cloud scenes. The

sensitivity of the result to the choice of the threshold is

discussed below, where the errors are quantified using

two verification statistics.

The ›T method detects the presence of fog/low cloud

as follows: on the right-hand side of the threshold, the

MODIS cloudy scenes will be deemed as ‘‘fog/low

cloud’’; on the left-hand side of the threshold, all MODIS

cloudy scenes will be defined as ‘‘other cloud.’’ Following

Schaefer (1990), we define the following cases:

Case X: The cloudy scene is a MODIS fog/low-cloud

case (i.e., ›T lies on the right-hand side of the

FIG. 3. A flowchart of the Arctic fog detection algorithm.
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FIG. 4. (a) The distribution of the cloud-top–sea surface temperature difference ›T for fog (with a base below

1000 ft or 304m; blue vertical bars) and nonfog (i.e., other cloud types; yellow vertical bars) during daytime over

open water ›Tday/water. The categorization of fog is based on CALIPSO observations of cloud-base heights; (b) the

probability of detection (POD) and false alarm rate (FAR) as a function of the trial ›T threshold values. The

number next to each dot is the corresponding threshold value. Points lying in the top-left quadrant may be selected

for fog detection. (c),(d) As in (a) and (b), but for daytime over sea ice ›Tday/ice. (e),(f) As in (a) and (b), but for

nighttime over open water ›Tnight/water. (g),(h) As in (a) and (b), but for nighttime over sea ice ›Tday/ice.

AUGUST 2019 Y I E T AL . 1649



threshold) and it is also a CALIOP fog/low-cloud

case. Thus the ›Tmethod reports a correct positive.

Case Y: The cloudy scene is a not MODIS fog/low-

cloud case (i.e., ›T lies on the left-hand side of the

threshold) but it is a CALIOP fog/low-cloud case.

Thus the ›T method reports a false negative.

Case Z: The cloudy scene is a MODIS fog/low-cloud

case but it is a not CALIOP fog/low-cloud case.

Thus the ›T method reports a false positive (also

known as false alarm).

Case W: The cloudy scene is not a MODIS fog/low-

cloud case nor a CALIOP fog/low-cloud case. Thus

the ›T method reports a correct negative.

Two verification statistics are used to test the perfor-

mance of the threshold. The first one is the probability of

detection (POD):

POD5
X

X1Y
,

which is simply the fraction of ‘‘real’’ (seen byCALIPSO)

fog/low-cloud cases that are successfully identified by

MODIS. The more negative the threshold, the closer the

POD is to 100%. For example, based on Fig. 4a, the POD

would be 99% if the threshold were to be 214K and all

real fog/low-cloud cases (the cyan bars in Fig. 4a) would

be captured. However, this 99% POD is misleading be-

cause a large portion of other cloud (the yellow bars in

Fig. 4a) is also misidentified as fog/low cloud. Therefore,

we need another verification quantity, the FAR:

FAR5
Z

X1Z
,

which is the fraction of ‘‘detected’’ (seen by MODIS)

fog/low-cloud cases that are not real fog/low cloud (seen

by CALIPSO); the more negative the threshold, the

larger is FAR. In the previous example, if the thresh-

old were to be ›Tday/water $ 214K, which yields a

99% POD, the FAR is 35%, a false alarm rate that is

not acceptable. A practical threshold is a compromise

that would result in a high POD while maintaining a

low FAR.

One may also compute the critical success index (CSI;

also known as the threat rate) and the bias score, de-

fined, respectively, as

CSI5
X

X1Y1Z
,

and

Bias score5
X1Z

X1Y
.

The CSI measures the fraction of observed or forecast

events that are correctly predicted, which is given by the

fraction ofMODIS successful detection of fog/low cloud

among all cases where MODIS or CALIPSO, or both,

report a fog/low cloud. The bias score measures the

ratio of the frequency of forecast events to the fre-

quency of observed events, which is given by the number

of MODIS fog/low-cloud events over the number of

CALIPSO fog/low-cloud events. Both the CSI and the

bias score should be close to 100% for an optimal

detection.

Figure 4b plots the values of POD against FAR as a

function of the threshold in the range 214 to 22K. As

mentioned above, at 214K, the POD is 99% but the

FAR is 35%. The FAR can be reduced to 1% when the

threshold is 24K, but then the POD is only 69%. To

achieve a high POD and a low FAR, an appropriate

threshold corresponds to a point located near the upper-

left corner of the G-shaped POD–FAR curve. Deviations

(of order61K) around this corner would lead to either a

large decrease POD (if a less negative threshold is cho-

sen) or a large increase in FAR (if a more negative

threshold is chosen). Therefore, we recommend the

threshold ›Tday/water $26K, whence the POD is 88%

and the FAR is 5% (Table 1). In words, if the thresh-

old were ›Tday/water $ 26K, then 88% of all fog/low-

cloud events would be successfully detected. And if

our detection algorithm says, ‘‘there is fog/low cloud,’’

then such a detection has a probability of 5% that the

‘‘suspected fog/low cloud’’ may turn out to be other

cloud. With this threshold, the CSI is 84% and the bias

score is 92%.

In Eq. (2), if a is varied between 10% and 30%, then

the POD and FAR would vary between 85% and 88%

and between 3% and 6%, respectively, for the thresh-

old ›Tday/water $ 26K. If b were varied between 100

and 300m, then the POD and FARwould vary between

86% and 88% and between 5% and 6%, respectively.

However, in both perturbation tests, the G-shaped

TABLE 1. Recommended ›T thresholds for Arctic fog detection

in four scenarios: daytime over open water, daytime over sea ice,

nighttime over open water, and nighttime over sea ice. The veri-

fication statistics, POD, FAR, CSI, and bias, corresponding to each

scenario are also tabulated.

Scenario

Threshold

(K)

POD

(%)

FAR

(%)

CSI

(%)

Bias

(%)

Day/open

water

26 88 5 84 92

Day/sea ice 26 82 8 77 89

Night/open

water

212 74 17 64 90

Night/sea ice 210 90 6 85 96
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curve remains unchanged and ›Tday/water $ 26K re-

mains as an optimal choice of the threshold. This holds

true for other polar conditions discussed in sections

3a(2)–(4). Therefore, in the rest of the paper, we only

discuss the thresholds determined using a 5 20% and

b 5 0.2 km.

The statistics obtained above can be shown to

be robust over different periods: We divided the

MODIS/CALIPSO collocated data into four equal

segments spanning from 2007 to 2008, from 2009 to 2010,

from 2011 to 2012, and from 2013 to 2014. We applied

the ›T$26K threshold that has been derived above to

define fog/low cloud in each segment. The resultant

POD, FAR, CSI and the bias score are shown in Table 2.

The means of POD, FAR, CSI and the bias score of the

five segments are the same as those statistics in Table 1.

The values of the POD, FAR, CSI and the bias score

vary between 82% and 90%, between 3% and 8%, be-

tween 79% and 87%, and between 85% and 94%, re-

spectively. Therefore, the uncertainties of the POD,

FAR, CSI and the bias score are of order only a few

percent.

2) DAYTIME OVER SEA ICE

The above analysis can be easily generalized to

other periods and surface types. Figure 4c shows the

›T distributions during daytime over sea ice. The

corresponding ›T data will be denoted by ›Tday/ice.

There are 67 566 fog/low-cloud scenes and 53 644

other cloud scenes. The total number of MODIS ob-

servations in this scenario is significantly less than that

over open water because there is less sea ice during

the summertime.

The ›Tday/ice distribution is predominantly between

210 and 2K for fog/low cloud and between 230 and

24K for other cloud. Based on Fig. 4d, we suggest the

threshold ›Tday/ice$26K, whence the POD is 82%, the

FAR is 8%, the CSI is 77%, and the bias score is 89%

(Table 1). Similar to the previous scenario, the uncer-

tainties of the verification statistics are of order a few

percent (Table 2).

3) NIGHTTIME OVER OPEN WATER

Figure 4e shows the ›T distributions during nighttime

over open water ›Tnight/water. There are 14 629 fog/low-

cloud scenes and 19 982 other cloud scenes. Note that

the total number of observations during nighttime is

much less than that during the daytime because the

criteria for ‘‘nighttime’’ retrievals occur less often from

March to October than the criteria for ‘‘daytime’’ re-

trievals. Unlike the scenarios during the daytime, the

›Tnight/water distribution for fog/low cloud during the

nighttime ranges between 220 and 4K, with a peak at

29K. The ›Tnight/water distribution for other cloud is

ranged between 250 and 24K, with a peak at 219K.

Thus, there is significant overlap between the distributions

of the two groups. Furthermore, the curvature of the

POD–FAR curve is much less obvious in Fig. 4f. The

FAR stays above 20% for most valid POD values. As a

result, we suggest the threshold ›Tnight/water $ 212K,

whence the POD is 74%, the FAR is 17%, theCSI is 64%,

and the bias score is 90% (Table 1). The uncertainties

of the verification statistics for this scenario are the largest

among all scenarios, which are of order 10%–25%, due

to the shorter nighttime and hence the smaller sample in

the summer.

TABLE 2. A robustness test of the recommended ›T thresholds with theMODIS–CALIPSO collocated data. The test has been performed

by applying the ›T thresholds (cf. Table 1) to 2-yr segments (2007/08, 2009/10, 2011/12, and 2013/14) of the total record.

Scenario Threshold (K) Segment POD (%) FAR (%) CSI (%) Bias (%)

Day/open water 26 2007/08 89.23 4.70 85.47 93.63

2009/10 90.09 3.66 87.11 93.52

2011/12 86.77 3.54 84.09 89.95

2013/14 84.87 7.99 79.05 92.25

Day/sea ice 26 2007/08 79.82 4.82 76.72 83.86

2009/10 81.94 5.93 77.91 87.10

2011/12 82.83 9.81 75.99 91.84

2013/14 82.75 10.42 75.48 92.38

Night/open water 212 2007/08 69.93 27.33 55.37 96.22

2009/10 66.87 9.21 62.62 73.65

2011/12 77.21 8.70 71.92 84.58

2013/14 77.40 27.48 59.85 106.73

Night/sea ice 210 2007/08 89.20 9.58 81.50 98.65

2009/10 93.63 9.05 85.65 102.95

2011/12 83.33 5.14 79.74 87.85

2013/14 93.51 2.23 91.55 95.64
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4) NIGHTTIME OVER SEA ICE

The last scenario to be examined is the ›T distribution

during nighttime over sea ice ›Tnight/ice. Figure 4g shows

the ›Tnight/ice distribution. There are 7626 fog/low-cloud

scenes and 6630 other cloud scenes. The ›Tnight/ice dis-

tribution for fog/low-cloud covers from 220 to 10K,

with a peak at 21K. The ›Tnight/ice distribution

for other cloud mostly covers from 230 to 2K, with

a peak 211K. Based on Fig. 4h, the threshold we

suggest for this scenario is ›Tnight/ice$210K, whence

the POD is 90%, the FAR is 6%, the CSI is 85%, and

the bias score is 96% (Table 1). The uncertainties

of the verification statistics are of order 5%–10%

(Table 3).

5) VALIDATION WITH THE 2015/16 MODIS AND

CALIPSO DATA

To validate the ›T method, we apply the thresh-

olds to the MODIS data acquired in 2015/16 and re-

compute the verification statistics (POD, FAR, CSI,

and bias) using the corresponding MODIS/CALIPSO

collocated data, in the same way that we derived

the thresholds. These MODIS data (and the MODIS/

CALIPSO collocated data) were not involved the

derivation of the thresholds. Therefore, the resultant

verification statistics (shown in Table 3) serve as an in-

dependent validation of our fog detection algorithm.

Among the four scenarios, the POD ranges between

75% and 100%, the FAR ranges between 7% and 20%,

the CSI ranges between 70% and 86%, and the bias

ranges between 84% and 126%. These PODs, FARs,

CSIs, and biases are consistent with those listed in

Tables 1 and 2, showing that the fog detection algorithm

is reliable.

b. A case study

We have applied the algorithm to a MODIS scene

over the Beaufort Sea region. Figure 5 shows the swath

path of MODIS over the Arctic at 2305 UTC 15 July

2016. An observed scene is fog/low cloud if the ›T

value is greater than the thresholds listed in Table 1. A

visible image of the cloud system is shown in Fig. 5a.

Figure 5b is an infrared map of detected fog/low cloud

(gray shades) and other cloud types (yellow shades)

using the ›T method. The cyan line in both panels

shows the coastlines in the region. For comparison,

fog/low cloud (pink; cloud-base height # 304m) and

other cloud types (light green) inferred from CALI-

PSO is overlaid. Note that the actual swath width of

CALIPSO is much smaller than the line width shown

in Fig. 5. Also note that the total swath width of

MODIS is much wider than that of CALIPSO. Along

the track, the fog/low-cloud pixels obtained using the

›T method agree well with those obtained from

CALIPSO. In the visible image (Fig. 5a), highly re-

flective, white pixels are generally associated with

thick low/middle clouds and are identified as other

cloud types in the infrared image (Fig. 5b). Most other

white pixels are identified fog/low cloud in the infrared

image. However, there are white pixels in the visible

image that appears as blue in the infrared image. These

pixels are clear sky, with sea ice at the ocean surface. In

these circumstances, we assign ‘‘ocean’’ in Fig. 5b for

visualization.

c. Comparing with the traditional bispectral method

The bispectral method has been used to detect the

presence of fog/low cloud at midlatitudes (Cermak and

Bendix 2007; Gao et al. 2009; Hunt 1973; Yamanouchi

and Kawaguchi 1992) based on the cloud-top informa-

tion. This method works the best for nighttime cloud

detection when there is no contamination by scattered

sunlight in the near-infrared channel at 3.9mm (Lee

et al. 1997). Lee et al. (1997) suggested in their Fig. 1 that

when fog/low cloud is present, the difference between

the brightness temperatures at the longwave infrared

channel at 10.7mm and the shortwave-infrared channel

at 3.9mm is negative during nighttime, typically between

24 and21K depending on the droplet sizes; the smaller

the droplet, the larger the difference. A number of

studies have demonstrated the skill of this bispectral

brightness temperature difference in fog/low-cloud

detection (Bendix 2002; Ellrod 1995; Eyre et al. 1984;

Lee et al. 1997; Turner et al. 1986). During daytime

when scattered sunlight is present, the brightness

temperature difference is positive, typically between

10 and 30K, which overlaps with the brightness tem-

perature difference over cloud-free sea.

TABLE 3. The verification statistics when the recommended ›T thresholds listed in Table 2 are applied to the MODIS–CALIPSO

collocated data in March–October during 2015/16.

Scenario Threshold (K) Segment POD (%) FAR (%) CSI (%) Bias (%)

Day/open water 26 2015/16 82.18 4.12 79.37 85.71

Day/sea ice 26 2015/16 73.93 5.06 71.13 77.87

Night/open water 212 2015/16 87.27 9.01 80.33 95.91

Night/sea ice 210 2015/16 95.45 4.88 90.99 100.35
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In contrast, our purpose is to detect fog based on the

cloud-base information, which is not directly implied

by the bispectral method. We show in Fig. 6 the bis-

pectral brightness temperature difference DTB, defined

as the brightness temperature of theMODIS channel 31

(10.7mm) minus that of channel 20 (3.9mm), for the

collocated MODIS/CALIPSO footprints during night-

time. The MODIS channel 20 data are also obtained

from the level 1 MYD021KM products. The pixels in-

cluded in Fig. 6 are the same as those used in Fig. 4 that

satisfy Eq. (2). The histograms of the DTB distribu-

tions over open water and sea ice are binned into 1-K

intervals (Figs. 6a,c). The POD–FAR relation are shown

in Figs. 6b and 6d. For clarity, only the POD–FAR

corresponding to DTB 5 24, 22, 0, and 2K are shown.

Over open water (Fig. 6a), the DTB distribution for the

‘‘fog/low cloud’’ group is negatively skewed between

25 and 3K with a peak near 20.5K; DTB for ‘‘other

cloud’’ group is distributed between210 and 3K and it is

negatively skewed with a peak at 0.5K. The FAR is al-

ways greater than 49% (Fig. 6b), showing that DTB can-

not be used to detect fog over open water. The DTB

distributions for the two groups are very similar over

sea ice (Fig. 6c), which are both negatively skewed

with a peak at 0.5K. The resultant POD–FAR relation

(Fig. 6d) shows little dependence on the DTB threshold.

The FAR is always close to 26% regardless of the

choice of the DTB threshold.

4. Summary

We have developed the ›T method for the detection

of fog/low cloud over the Arctic Ocean, where ›T is

defined as the cloud-top temperature minus the surface

temperature under the cloud. Fog/low cloud in this work

is defined as a cloud object that has a base lower than

1000 ft (304m). A fog/low-cloud event is said to be

detected if ›T is greater than a threshold, which is derived

using MODIS channel 31 measurements at 10.7mm and

the surface temperature provided in the standardMODIS

data products. Prior information of fog/low-cloud events

required for defining the thresholds are obtained from a

subset of collocated CALIPSO cloud-base height mea-

surements. Since MODIS and CALIPSO have different

scanning geometry and spatial resolution, the selection of

the collocated MODIS/CALIPSO measurements is to

ensure that both MODIS and CALIPSO have the

same nadir footprints and that they are seeing the same

single-layered cloud in the fields of view. Depending

on the observation period (day or night) and the sur-

face types (open water or sea ice), the ›T threshold

lies between 26 and 212K over a test region in the

FIG. 5. (a) A visible image of the MODIS swath scan at 2305 UTC 15 July 2016. The cyan line represents the

coastline. The fog detected byCALIPSO (cloud-base height#304m) along its track is overlaid as a pink line.Other

types detected by CALIPSO along its track are overlaid as a green line. Note that the actual swath width of

CALIPSO (125m) is much narrower than the thickness of the track shown. (b) The MODIS fog product derived

using the ›Tmethod. The sameCALIPSO fog product shown in (a) is also overlaid for comparison. The color codes

are as follows: dark green, land; blue, ocean; gray, fog; and yellow, other cloud types.
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Chukchi Sea and the Beaufort Sea.With the collocated

MODIS/CALIPSO measurements, we show that the ›T

method may detect Arctic fog/low cloud over the ocean

with an optimal PODof 74%–90%andFARof 5%–17%.
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