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Abstract
Tropical cyclones (TCs) are affected significantly by the climate system and can provide feedbacks. TC activities are impor-
tant for weather forecasting and climate predictions. Here, we focused on the spatial distribution of accumulated cyclone 
energy (ACE) and its seasonal prediction. To predict the ACE distribution over the western North Pacific (WNP) in autumn, 
we established a physical-empirical model. Analyzing 36 years observations (1979–2014) of ACE over the WNP reveals 
two physically predictable modes. The sea surface temperature (SST) in the southwest Pacific and central Pacific affect the 
first mode through the low-level circulations. At the same time, the SST in the Gulf of Alaska and the sea-ice concentration 
in the Beaufort Sea affect the first mode through the circumglobal teleconnection. The development of the eastern Pacific 
El-Niño and anomalous SST over the North Pacific affect the second mode through the vertical wind shear and low-level 
circulation. The sea-ice concentration in the Greenland Sea induce an upper-level circulation anomaly over the WNP and 
affect the second mode. Physically meaningful predictors were selected according to the controlling mechanisms of the two 
modes. The cross-validated hindcast results demonstrated that the principal components of the two modes are predicted with 
correlation coefficients of 0.68 and 0.63. Thus, the two modes are predictable. The pattern correlation coefficient skill of 
the ACE spatial pattern is 0.26, which is significant at the 99% confidence level. The temporal correlation coefficient skill 
reaches 0.21 over major regions influenced by TCs. To validate the real-time predictability of the model, independent tests 
were performed on the last three years (2015, 2016 and 2017), and the results show that the pattern correlation coefficients 
between the observations and the predictions are 0.39, 0.70, and 0.41, respectively.

Keywords  Accumulated cyclone energy · Western north pacific · Predictable mode analysis · Sea surface temperature · 
Arctic sea ice

1  Introduction

Tropical cyclones (TCs) are intense atmospheric vortices 
that develop over warm tropical or subtropical oceans. TC 
activity includes TC genesis, development and tracks, which 
results from multiscale interactions. TC tracks are mostly 
affected by large-scale atmospheric general circulation (Wu 
and Emanuel 1993; Wu and Kurihara 1996; Wang and Hol-
land 1996), beta drift (Chan and Gray 1982; Holland 1983, 
1984; Carr and Elsberry 1990) and their interactions (Dema-
ria 1985; Evans et al. 1991; Wang et al. 1998). The climate 
systems that influence TC activity over the western North 
Pacific (WNP) include the El Niño-Southern Oscillation 
(ENSO) (Chan 1985; Camargo et al. 2007; Wang and Chan 
2002; Hu et al. 2018), subtropical high (Luo 2001), Indian 
Ocean sea surface temperature (SST) (Zhan et al. 2011; 
Du et al. 2011), Madden–Julian oscillation (Maloney and 
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Hartmann 2001; Camargo et al. 2009; Lee et al. 2018) sea 
ice (Fan 2007; Deng et al. 2018), Hadley cell (Lander 1994; 
Camargo et al. 2007) quasi-biennial oscillation (Chan 1995), 
summer monsoons (Lander 1994; Camargo et al. 2007), 
Arctic oscillation (Choi and Byun 2010), the mid-Pacific 
trough (Wu et al. 2015; Wang and Wu 2016; Deng et al. 
2018; Hu et al. 2018), the westerlies (Dong and Neumann 
1986) and so on.

As an important component of the global climate system, 
TC activities may provide cross-scale feedbacks to the cli-
mate system. Bell et al. (2000) proposed that the accumu-
lated cyclone energy (ACE), which is defined as the accumu-
lated wind power of TCs, is able to quantify TC activity. The 
latest research has shown that TC ACE in a particular region 
over the WNP can modulate the amplitude of ENSO (Wang 
et al. 2019) and affect the interannual variability of the cli-
mate system. Thus, the prediction of TC ACE is important 
to climate prediction, but it is a difficult problem that needs 
to be solved. Some studies have focused on the prediction 
of ACE over different basins. Lea and Saunders (2003) pre-
dicted the North Atlantic yearly ACE index with 925-hPa 
zonal wind and SST over the main development region. 
Since 2000, the Tropical Storm Risk program has issued 
basin-wide ACE prediction and provided probabilistic out-
look forecasts from March to August over the North Atlantic 
every year using SST (Lloyd-Hughes et al. 2004). Klotzbach 
(2014) used 2-m air temperature and 200-hPa zonal wind to 
predict the North Atlantic ACE index from June to October. 
Based on the circulation and SSTs predicted by the second 
version of the Climate Forecast System, Zhan and Wang 
(2016) used the SST gradient, vertical wind shear (VWS), 
Niño 3.4 SST and the southwestern Pacific SST to predict 
ACE over the WNP. However, the previous seasonal forecast 
of ACE addresses the total ACE over a whole oceanic basin, 
which not focus on the spatial distribution of ACE. This 
study focuses on both the spatial and temporal prediction of 
ACE over the WNP, including the South China Sea (SCS).

In previous studies, most predictions of ACE used SST as 
a predictor. Fan (2007) proposed that Arctic sea ice affects 
the TC frequency over the WNP. The loss of Arctic sea ice 
induces the western part of the WNP to favor TC genesis and 
development, which results westward shift in TC activity 
(Deng et al. 2018). Moreover, the emergence of surface-
based Arctic amplification caused by fast melting of Arc-
tic sea ice affects global climate change by planetary wave 
amplification (Screen and Simmonds 2013; Cohen et al. 
2014), which may result in many disastrous weather events 
(Tang et al. 2014), such as freezing rain (Niu et al. 2015), 
extremely high temperatures (Zhou and Huang 2015), and 
extreme low temperatures (Hu et al. 2015), which frequently 
appear in mid-latitudes. In other words, the Arctic sea ice as 
a type of external forcing may be a good long-lead predictor 
for mid-latitude weather and extreme events predictions in 

the coming decades (Cohen et al. 2014). Whether the Arctic 
sea ice will contribute to ACE predictions is still unknown, 
and we need to further investigate this issue further. In this 
study, we attempt to predict the spatial pattern of ACE in 
autumn (September–November) using the predictable mode 
analysis (PMA) method (Wang et al. 2007) to build the phys-
ical-empirical (P–E) model, which is introduced in detail 
in the methods. We focus on autumn because the mean TC 
intensity, which is based on the ratio of super typhoon fre-
quency and storms, is strongest this season (Xu and Huang 
2010). The ratio of the number of TCs with rapid intensifi-
cation to the total number of TCs (Wang and Zhou 2008) is 
also the highest among in this season. However, TC ACE in 
autumn is not well investigated compared to the typical TC 
season (July–October) over the WNP.

This paper is organized as follows. The data and methods 
are described in Sect. 2. Section 3 briefly introduces the 
climatology of ACE in autumn over the WNP. Section 4 
shows the two dominant modes of ACE, the dipole mode 
and the triple mode, and investigates the possible mechanism 
by which the tropical ocean and the Arctic affect the ACE 
of these two modes. The P–E model is built in Sect. 5, and 
the predictability, including the predictability from 1979 to 
2014 and the real-time predictions from 2015 to 2017, is 
also discussed in this section. Section 6 presents conclusions 
and discussion.

2 � Data and methods

2.1 � Data

The TC data used in this paper were the best track data 
(BTD) provided by the Japan Meteorological Agency (JMA) 
for the period from 1979 to 2017. ACE, which calculates 
the sum of the maximum sustained wind speed squared for 
each 6-h interval, is defined here (Bell et al. 2000; Kim et al. 
2013).

where t  represents the lifetime of each TC, N  is the total 
number of TCs,toi is the original record of each TC, tfi is 
the final record of each TC and v(t) is the maximum sus-
tained wind speed for each 6 h interval according to the 
BTD. Only the lifetime maximum intensity of a TC above 
a tropical storm ( vmax ≥ 17.2 ) m/s can be considered in this 
study. Similarly, the lifetime with v(t) < 17.2 m/s is regarded 
as an immature disturbance or a collapsed tropical cyclone, 
which is excluded in our study. Since we focused on the 
TC intensity prediction in autumn, which is different from 
the traditional TC season (JJASO, from June to October), 

(1)ACE =

N
∑

i=1

tfi
∑

toi

v(t)2,
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we defined the seasonal ACE from September to November 
(SON) over both the SCS and the WNP. ACE analysis was 
performed on the original data based on grids of 5° × 5° in 
this study. Except for JMA, numerous agencies published 
BTD over the WNP, such as the Joint Typhoon Warning 
Center (JTWC), China Meteorological Agency (CMA), and 
the Hong Kong Observatory also contribute their observa-
tion of tropical cyclone to public. To avoid the single dataset 
bias on this study, as a comparison, we also used BTD from 
CMA (Ying et al. 2014) from 1979 to 2014 and BTD from 
JTWC with the same time range in the statistical section. 
Previous studies compared the differences between BTDs 
form numerous agencies. Though the differences in TC 
tracks among these data sets are negligibly small, the TCs 
in the BTD from JTWC tends to more intensity (Song et al. 
2010; Barcikowska et al. 2012). Knapp and Kruk (2010) 
showed the difference in the mean deviation of the maximum 
sustain windspeed among BTD is largely linear and JMA 
slightly differs from CMA after the homogenous procedures. 
Thus the TC ACE based on the BTD provided by JTWC 
is larger than others, while their spatial distributions and 
interannual variations are similar. All TCs from different 
datasets were calculated in this paper and were chosen by 
the same criterion; their units were first changed from knots 
to meters per second.

The monthly mean atmospheric circulation data were 
obtained from the National Center for Environment Predic-
tion (NCEP) Reanalysis1 dataset. The monthly SST data 
were from the Hadley Centre Sea Surface Temperature 
dataset 1 (HadISST1). This study used sea ice concentra-
tion (SIC) data from the National Snow and Ice Data Center 
(NSIDC) for the period 1979–2017. All climatology and 
anomalous calculations in this paper were based on the 
period from 1979 to 2014.

2.2 � Methods: predictable mode analysis

Wang et al. (2007) first proposed the PMA method to evalu-
ate the potential predictability and build a predictive model 
of the element field. This method has been used for estimat-
ing the predictability of anomalous anticyclones over the 
WNP (Wang et al. 2013), Asian summer rainfall (Yim et al. 
2014), and other features (e.g., Yim et al. 2015; Xing et al. 
2016, 2017).

The PMA method has three steps. First, the predict-
able mode observes frequent patterns of variability divided 
by empirical orthogonal function (EOF) analysis, which 
requires the variance contribution to occupy a large propor-
tion of the total variance. Second, the prediction of each 
empirical pattern provides the dynamic basis with physical 
interpretation. In addition, a P–E prediction model is estab-
lished by the principal component (PC) of each mode. Third, 
the P–E model uses retrospective predictions to confirm the 

potential predictability of the predictable mode. We applied 
the cross-validation method to make a retrospective fore-
cast for testing the hindcast experiment skills (Michaelsen 
1987). For the retrospective forecast, we separated training 
and prediction samples and took every 3 years as targets to 
be predicted at each step. The PCs of target years were pre-
dicted using the multilinear regression equation to predict 
the root in the corresponding training period.

In this study, we selected physically consequential predic-
tors from the anomalous fields of SST and SIC, which reflect 
influences on the mid-latitude atmospheric circulation. 
Compared to oceanic changes, the atmospheric process is 
relatively fast, and capturing signals of this process to make 
long-term forecasts is difficult. Changes in SST and Arctic 
SIC were applied to oceanic heat conditions, which include 
signals of heat transport and affected atmospheric circula-
tions. These predictors were searched by identifying per-
sistent signals from the previous spring to summer, with an 
average of three months per season. Following the process of 
finding predictors, we speculated about the physical mecha-
nisms that could explain the relationship between ACE and 
these predictors. We used regression analyses to find these 
possible predictors and focused on those significant at the 
95% confidence level according to Student’s t-test. After 
choosing predictors, stepwise multilinear regression was 
used to build the P–E model, and each chosen predictor sig-
nificantly increased the regressed variation via the standard 
F test (Panofsky and Brier 1968).

Since the P–E model considers only the value of ACE in 
the real-time prediction, determining whether TCs occurred 
in each grid was not possible. Therefore, the ACE at mar-
ginal regions was always calculated with a value but was 
actually zero. We used the regression estimation of event 
probability (REEP; Miller 1964) to discuss the occurrence 
of TCs in each grid. REEP first assigns a value of one or zero 
to represent that one process is or is not happening, and then 
uses multilinear regression to build an equation based on the 
predictors (also one or zero). Finally, the medians (the mean 
of the minimum probability when a process happens and 
the maximum probability when a process disappears) are 
used to distinguish whether TCs appeared. When the event 
probability was larger than the median, we considered the 
calculated value to be true. Conversely, the calculated value 
was replaced by zero when the event probability was less 
than the median.

3 � Climatology of ACE over the WNP 
in autumn

The time series of ACE over the WNP in autumn (Fig. 1a) 
shows a significant interannual variation but has no con-
sistent interdecadal trend. The 36-year mean ACE is 
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309,442 m2∕s2 , and the standard deviation is 111,975 
m2∕s2 . The maximum ACE over the WNP is 661,909 
m2∕s2 , while the minimum value of ACE is 131,949 m2∕s2 . 
These time series based on JTWC and JMA BTD have 
characteristics similar to the maximum value in 1991, 
except that the maximum value in the CMA data occurs 
in 1992. The correlation coefficient of the ACE time-series 
between JMA and CMA is 0.93 while the correlation coef-
ficient between JMA and JTWC is 0.91, and the correla-
tion coefficient of ACE between CMA and JTWC is 0.87. 
These values mean that the time series of ACE over the 
WNP differ slightly among different datasets. This result 
occurs because the differences between JTWC and CMA/
JMA are largely linear, while the differences between JMA 
and CMA are much smaller (Knapp and Kruk 2010).

Figure 1b shows the spatial distribution of the long-
term mean ACE in the WNP, which is largely coherent 
with the pattern of the ACE standard deviation shown in 
Fig. 1c. These results are based on the BTD from JMA for 
1979–2014. The region (120° E–140° E; 15° N–30° N) 
represents the highest standard deviation, which is south 
of the Japan islands and near the East Asia mainland. High 
values of ACE over these regions indicate that the coastal 
regions of China, Japan, South Korea, and the Philippines 
experience large hazardous events (such as high wind and 
heavy precipitation). Therefore, the prediction of the ACE 

distribution over the WNP is meaningful for East Asia. 
The pattern correlation coefficient of the ACE long-term 
mean pattern reaches 0.99 between JMA and CMA/JTWC, 
which implies less difference in their spatial distributions.

Based on the statistical climatology of ACE (Fig. 1b), we 
consider the area of (5°–60° N, 95° E–165° W) as the target 
region in the following sections, covering 12 × 23 grids over 
the WNP and SCS. A total of 126 grids contained TC activ-
ity from 1979 to 2014 derived from JMA. Additionally, 142 
and 130 grids contained TC activity based on BTD from 
CMA and JTWC, respectively.

4 � Leading EOF modes of ACE

Due to the lack of satellite data before the 1970s, we used 
ACE anomalies from 1979 to 2014 to perform EOF anal-
ysis to avoid possible inaccurate TC observations. Based 
on North’s rule (North et al. 1982), the two leading EOF 
modes are significantly separated from each other and the 
remainder of the EOF modes. The two leading EOF modes 
of ACE account for 19.54% and 15.19% of the total variance. 
In comparison, they account for 22.84% and 12.12% of the 
total variance based on the BTD from CMA and 22.92% and 
13.40% of the total variance based on the BTD from JTWC. 
The pattern correlation coefficients of the first leading EOF 

Fig. 1   a Time series of ACE 
over the western North Pacific 
(WNP). b Long-term mean of 
the ACE pattern and c standard 
deviation pattern over the WNP 
(in units of 104 m2/s2, calcu-
lated for September–November 
(SON) from 1979 to 2014)
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mode from the three datasets are 0.94 and 0.94, while the 
pattern correlation coefficients are 0.64 and 0.66 for the sec-
ond leading EOF mode between JMA and JTWC/CMA. In 
this section, we discuss the characteristics of ACE patterns 
and the regression/correlation maps of the atmospheric cir-
culations associated with the first two modes. The PCs used 
in the regression/correlation analysis in the following section 
are based on JMA BTD because of small difference among 
the three datasets, and because the JMA is the official moni-
tor for TC over the WNP.

4.1 � The first mode: dipole mode

The spatial pattern of the first mode (EOF1) is characterized 
by a dipole distribution in 110°–155° E, 10°–40° N. This 
mode represents the TC dipole activity shown in Fig. 2a. 
The high positive center is located in the Philippine Sea, and 
the whole positive area reaches the line of 170° E. In con-
trast, the negative center shows a slope shaping, which from 
the East China Sea through Taiwan Island, and then ends at 
the SCS. Thus, we define the first mode as the dipole ACE 
mode. The principal component of this mode (PC1) shows 
an interannual variability of dipole ACE with peak values in 
1991 and 2009 (Fig. 2b). In this mode, negative anomalies 
appear over the SCS and the Philippine Sea, and large posi-
tive anomalies are present over the region of 130° E–145° E, 
10°–40° N, that is, over the WNP south of the Japan islands. 
This result means that more TCs affect the Philippine Sea 
and Japan islands but fewer TCs affect South China and the 
Philippine islands when PC1 is positive.

To determine the atmospheric circulation effect on the 
dipole mode, the regression maps of geopotential height 
in the upper troposphere (200 hPa) and mid-troposphere 
(500 hPa) for June–August (JJA) and SON, with PC1 refer-
ring to JMA ACE, are depicted in Fig. 3. The significant 
positive geopotential height anomalies at 200  hPa are 
located over western Europe, Siberia, and northern Canada, 
while negative geopotential height anomalies are located 
from west to east over the Ural Mountains, eastern Sibe-
ria, and the region from the North Atlantic to Greenland 
(Fig. 3a). They make up an anomalous wave train, similar 
to the circumglobal teleconnection proposed by Ding and 
Wang (2005) and Ding et al. (2011), and the shape of the 
wave train is straight in summer. These anomalous waves 
change to a sloping shape from 60° N to 40° N in autumn 
(Fig. 3b). Their positive centers move to the Ural Moun-
tains, northeast of the Japan islands, and Hudson Bay at 
200 hPa. The vertical feature of the anomalous wave train 
is vital to show how the large-scale atmosphere affects the 
dipole mode. Figure 3c shows the section along the straight 
line at 60° N in summer, and the anomalous waves train 
shows barotropic features. The result remains consistent in 
autumn, in which the section of the sloping line in Fig. 3d 
is also a barotropic feature that crosses the abnormal cent-
ers in Fig. 3b. The barotropic feature in autumn leads to a 
higher geopotential height center over northern Japan, north 
of the WNP subtropical high (WPSH), causing variations in 
the WPSH and wind at 500 hPa (Fig. 3e). The shift of the 
WPSH to the northeast (the dashed red line in Fig. 3e) leads 
to the weakness of southeast wind along the boundary of 
the WPSH. The steering flow at 500 hPa is crucial for TC 

Fig. 2   a The first mode (EOF1) 
and c the second mode (EOF2) 
(in units of 104 m2/s2) leading 
modes derived from the autumn 
ACE anomalies in each grid 
over the WNP for the period 
1979–2014 by Japan Meteoro-
logical Agency (JMA) best track 
data (BTD). b PC1 and d PC2 
are the time series of EOF1 and 
EOF2 derived by using three 
best track datasets. The black 
solid line presents PC1 derived 
from JMA BTD. The red solid 
line presents PC1 computed 
from China Meteorological 
Agency (CMA) BTD. The blue 
solid line presents PC1 derived 
from the data of Joint Typhoon 
Warning Center (JTWC)
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motion. The probability of TC moving to the west of 120° 
E will decrease under the weakness of the southeast wind. 
Notably, the mid-Pacific trough moving east in autumn (the 
dashed purple line in Fig. 3f, identified by relative vorticity 
of 1 × 10

−6 s−1, Hu et al. 2018) due to the positive anomalous 
geopotential height in the region from 170° E–150° W and 
20° N–40° N (Fig. 3b). Wu et al. (2015) and Wang and Wu 
(2016) indicated that the shift in the mid-Pacific trough (the 
purple lines in Fig. 3f) could affect the west–east movement 
of TC activities.

Meanwhile, some anomalous local conditions occur. Gen-
erally, middle-level relative humidity, VWS, relative vorti-
city, and SST are the most important local conditions for TC 
genesis and development (Gray 1968). VWS has significant 
performance in the first mode, with the vector difference 
of 200 hPa wind and 850 hPa used here. Figure 3f shows 

a higher VWS in the region of 120° E–150° E, 5° N–15° 
N and a smaller VWS along the margin of the WPSH. The 
stronger VWS hinders the generation and intensification of 
TCs, causing the decreasing ACE in that region. Under the 
eastward shift of cyclogenesis, more TC activities cross the 
region of small VWS, and they are not favored to the west 
due to the weakness of the southeast steering flow when PC1 
is positive. At the same time, the cyclonic anomalies over 
the Philippine Sea shown at 850 hPa, represent an impor-
tant system for TC activities (Wang and Chan 2002; Zhou 
and Cui 2011). TCs wander over the suitable basin and then 
intensify, this process forms the dipole mode in which one 
center is the east of the Philippine islands and the other 
center shows a sloping shape.

To find proper predictors for the dipole mode, we used 
regression analyses of the time series PC1 on the SST and 

Fig. 3   The regression (color shading) map of PC1 with a the June to 
August (JJA) mean and b SON mean 200-hPa geopotential height. 
The black lines in a, b mean latitudinal section in c, d. c Section 
across the latitude of 60°N while d across the sloping line cross-
ing the anomalous center. The regression map of PC1 with 500-hPa 
geopotential height is for e the SON mean. The vectors in e, f rep-
resent the 90% significant 500-hPa wind anomalies with PC1 (unit: 
m/s). The black solid contour in e is the long term mean of 5880 geo-
potential height at 500 hPa (unit: geopotential meter). The red solid 

line in e is the long term mean 5875 line of geopotential height at 
500 hPa. The red dashed line in e is the regression of 5875 geopoten-
tial height at 500 hPa. The regression map of PC1 is with the verti-
cal wind shear (VWS, sum of the squares of the 200-hPa zonal wind 
minus the 850-hPa zonal wind, unit: m/s) in f. The purple solid line 
in f is the position of the mid-Pacific trough at 200 hPa. The purple 
dashed line in f is the regression position of mid-Pacific trough. The 
gray cross-shaped markers represent the regression significant at the 
90% confidence level
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SIC fields. The specific details are illustrated in Fig. 4. The 
pronounced predictors are shown in SST field: positive SST 
anomalies continuously appear over the tropical Pacific 
from MAM (Fig. 4a) to JJA (Fig. 4b); the persistent warm-
ing occurs in the Gulf of Alaska; and a large cooling region 
is present in the southwest Pacific. Meanwhile, the SIC in 
the Beaufort Sea shows significant positive anomalies in JJA 
(Fig. 4c). We named these features the four predictors, and 
their specific areas and meanings shown in Table 1. How do 
they affect atmospheric circulation over the WNP? We cor-
related them with the 500-hPa geopotential height/wind and 
the local VWS, following some results in previous studies, 
to illustrate two possible pathways.

The anomalous SST in the Gulf of Alaska could induce 
an anomalous atmospheric wave train (Archambault et al. 
2013, 2015, also in Fig. 5c), while the increased sea ice 
in the Beaufort Sea benefits the barotropic feature of the 
anomalous wave train (Overland and Wang 2010; Jaiser et al. 
2012) and could be a trigger for the anomalous mid-Pacific 

trough (Deng et al. 2018) shown in Fig. 5a. At the same 
time, the anomalous waves train not only influence the posi-
tion of the WPSH (Fig. 5c), but also cause the shift of the 
mid-Pacific trough (the black line in Fig. 5b). During the 
positive PC1 years, the WPSH steering flow on the south-
west side of the WPSH weak (Fig. 5a). The eastward of 
mid-Pacific trough results in the decreased VWS at the east 
of 145°E (Fig. 5b, d); this situation is consistent with the 
conclusion in Wu et al. (2015) that it is linked to the weaker 
westerlies at 200 hPa and the stronger westerlies in the low 
troposphere that are also physically associated with the vari-
ations in the temperature gradient. Both of these features 
induce the eastern shift of TC activities (Wu et al. 2005, 
Wang and Wu 2016). Thus, these two predictors have been 
selected as predictors named the Gulf of Alaska the SST 
(GASST) and the Beaufort Sea SIC (BFSICE).

Another pathway is the spring Niño 3.4 SST anoma-
lies that cause the deepening of the East Asia trough and 
the strengthening of the WPSH (Wang and Chan 2002). 

Fig. 4   The regression maps are 
in a March–May (MAM), b JJA 
sea surface temperature (SST) 
and PC1 (unit: °C). While c is 
the regression map of JJA sea 
ice concentration (SIC) and 
PC1 (unit: %). The regions with 
gray crosses are significant at 
95% confidence level. These 
solid black rectangles in b, c are 
regions of selected predictors

Table 1   Definition of each 
predictor selected for the 
prediction of the accumulated 
cyclone energy (ACE) dipole 
mode

Acronym Meaning Definition

BFSICE The mean of June–July–August
Beaufort Sea SIC

MSIC (70° N–75° N, 150° W–120° W)

GASST The mean of June–July–August
Gulf of Alaska SST

MSST (40° N–50° N, 160° W–130° W)

Niño 3.4 The mean of June–July–August
Niño 3.4

MSST (5° S–5° N, 170° W–120° W)

SWPSST The mean of June–July–August
Southwest Pacific SST

MSST (50° S–10° S, 160° E–170° W)
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Similarly, the JJA mean Niño 3.4 SST anomalies are related 
to a positive anomalous geopotential height over the WNP 
(Fig.  5e), suppressing the anomalous equator westerly. 
Wang and Chan (2002) determined that the mechanism can 
persist in the proceeding fall because the Philippine Sea is 
dominated by anticyclonic anomalies during El Niño events, 
which is consistent with Figs. 4 and 5e, f. Matsuura et al. 
(2003) used a high-resolution coupled general circulation 
model (CGCM) to prove that the interdecadal TC variability 
correlated with long-term variations in SST in the tropical 

central Pacific. Meanwhile, the negative southwest Pacific 
SST could affect TC frequency through the anomalous anti-
cyclone over the SCS and the Philippine Sea (Zhou and 
Cui 2011, also Fig. 5h). The anomalous southwest Pacific 
SST further shows the influence on the decreased southeast 
steering flow in Fig. 5g. In fact, the southwest Pacific SST 
gradient has been used to predict the WNP ACE (Zhan et al. 
2013; Zhan and Wang 2016).

Thus, BFSICE and GASST focus on the Northern Hemi-
spheric anomalous wave train, which causes the shift of the 

Fig. 5   The correlation map of the SON mean 500-hPa geopotential 
height (color shading)/the regression map of 500-hPa wind anoma-
lies (vectors) with reference to 0-month lead predictors: a JJA mean 
BFSICE, c JJA mean GASST, e JJA mean Niño 3.4 and g JJA mean 
SWPSST of PC1. The correlation map of SON local VWS (color 
shading)/the regression map of 850-hPa anomalous wind (black vec-

tors) with the predictors b JJA mean BFSICE, d JJA mean GASST, f 
JJA mean Niño 3.4 and h JJA mean SWPSST of PC1. The black solid 
lines in b, d, f, h are the long term mean position of the mid-Pacific 
trough at 200 hPa. The black dashed line in b, d, f, h are the regres-
sion position of mid-Pacific trough, the green lines show the variation 
of mid-Pacific trough significant at 95% confidence level, respectively
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WPSH and mid-Pacific trough and then changes the pat-
tern of the local VWS. Moreover, the Niño 3.4 index and 
the Southwest Pacific SST (SWPSST) dominate the lower 
troposphere anticyclonic/cyclonic anomalies to affect ACE. 
These variables are four predictors on the dipole mode. The 
detailed definitions of the four predictors for the meridional 
mode are shown in Table 1.

4.2 � The second mode: triple mode

The spatial pattern of the second mode is characterized by 
three centers including two positive centers, one from the 
SCS to the Philippine islands, the east of the 135° E line, 
and a negative center south of the Ryukyu islands that ends 
at 135° E. Based on the spatial distribution (Fig. 2c), we 
named the second mode the triple mode. The time series of 
the triple mode (PC2, Fig. 2d) shows the interannual vari-
ability of the triple ACE. The peak values of PC2 are in 1987 
and 1997, which differs from PC1 in the dipole mode. In 
the triple mode, more TCs were active over the SCS and the 
region east of 135° E and less TC activity occurred between 
them during the positive PC2 years.

Before searching predictors, we examined the atmos-
pheric anomalies. First, positive 500-hPa geopotential 
height anomalies appear over South China and east of 150° 
E (Fig. 6a). There are negative geopotential height anomalies 
over a large region from the Japanese islands and the Japan 
Sea across the Korean Peninsula to the northeast of mainland 
China. This means that the WPSH strengthens on both the 
west and east sides (the solid red line in Fig. 6a) compared 
to normal years (The dashed red line in Fig. 6a). Anomalous 
northwest winds appear north of the WPSH (also in Fig. 6a), 
hindering the northward TC activities in this region. Second, 
the local VWS shows a region of significant positive anoma-
lies over the eastern part of the Philippine Sea that inhibits 
TC genesis and development, as shown in Fig. 6b. According 
to the wind field anomalies, the anomalous westerlies in both 
the upper and lower troposphere dramatically contribute to 
the variation in VWS. Third, the positive 700-hPa relative 
humidity anomalies over the SCS and South China benefit 
TC genesis and intensification (Fig. 6c). Finally, correspond-
ing with the negative ACE at the region of 130°–140° E, 
20°–35° N, significant negative 850-hPa relative vorticity 
anomalies hinder TC genesis (Fig. 6d).

Fig. 6   The regression map of PC2 with 500-hPa geopotential height 
is for a the SON mean. The vectors in a represent the 90% signifi-
cant 500-hPa wind anomalies with PC2 (unit: m/s). The black solid 
contour in a is the long term mean of 5880 geopotential height 
at 500  hPa (unit: geopotential meter). The red solid line in a is the 
long term mean 5875 line of geopotential height at 500  hPa. The 

red dashed line in a is the regression of 5875 geopotential height at 
500 hPa. The regression map of PC2 with b VWS, c relative humidity 
at 700 hPa and d relative vorticity at 850 hPa. Black vectors in b is 
anomalous wind at 850 hPa and the green vectors is anomalous wind 
at 200 hPa. The gray cross-shaped markers in a–c show the regres-
sion significant at the 90% confidence level
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To determine the oceanic anomalies that induce changes 
in the WPSH and local atmospheric conditions, we exam-
ined anomalies in SST/SIC during MAM and JJA (Fig. 7). 
Large regions of the North Pacific and southwest Pacific 
show cooling signals. Based on the mechanism that the SST 
of the southwest Pacific can affect WNP TC activities via 
anticyclonic/cyclonic circulation, no such signal shown in 
Fig. 6b. Therefore, we excluded the southwest Pacific SST as 
a predictor. The eastern Pacific is warming but insignificant 
in spring (Fig. 7a), then the warming proceeding in sum-
mer and is much more marked (Fig. 7b). The SIC over the 
Greenland Sea (GLSICE) is highly associated with the triple 
ACE mode (Fig. 7c).

The influence of eastern Pacific warming on TC activities 
has been illustrated in many previous studies. These devel-
oping SST warming signals seem to be similar to the eastern 
Pacific El Niño (Rasmusson and Carpenter 1982). The direct 
relationship between the difference in the Niño 1 + 2 index 
(Rayner et al. 2003) (JJA mean minus MAM mean) and the 
local atmosphere is shown in Fig. 8c, d. The large positive 
correlation of the Niño 1 + 2 development index in South 
China indicates the westward strengthening of the WPSH. 
The westward reinforced WPSH could enhance the steering 
flow over the SCS (Fig. 8c) and suppress the convections in 

the SCS and the Philippine Sea in both summer and autumn 
during the eastern Pacific warming events (Wu et al. 2015). 
At the same time, the eastern Pacific El Niño events indicate 
the weakening of Walker circulation. Thus, the VWS over 
the southern part of the SCS and the southeastern WNP is 
reduced (Fig. 8d). The reduced VWS may enhance the TC 
activity in the SCS and the eastern part of the WNP. This 
result is consistent with Fig. 2b.

Arctic sea ice loss could reduce the thermal contrast 
between tropical and polar regions and then reduce the 
intensity of the Northern Hemispheric jet streams (Tang 
et al. 2014; Petrie et al. 2015). The westerlies and VWS over 
eastern Asia are enhanced during positive GLSICE years 
(Fig. 8b), this is also consistent with Fig. 6b. Anomalous 
north wind occurs at 200 hPa on the east side of Taiwan 
Island during positive GLSICE years, which decrease the 
TC activity in this region. However, neither the geopoten-
tial height nor the wind field at 500 hPa has a significant 
correlation with GLSICE (Fig. 8a). This result implies that 
GLSICE affect the atmospheric circulation over eastern Asia 
and the WNP through upper-level systems, but the details 
still need more investigation.

The third predictor is the North Pacific SST (NPSST) 
anomalies, which persistently cool from spring (Fig. 7a) 

Fig. 7   The same as Fig. 4 but for PC2
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to summer (Fig. 7b) during positive PC2 years. There is a 
significantly negative anomaly in the 500-hPa geopotential 
height and associated cyclonic circulations over the region 
from Korea to the dateline during negative NPSST years 
(Fig. 8e). The cooling of the NPSST increases the SST 
gradient from the tropical Pacific to the high latitudes and 
strengthens the mid-latitude westerlies in both the upper and 
lower tropospheres (Fig. 8f). In the Philippine Sea, there is 
an anticyclonic circulation on 850 hPa, which suppress TC 
activity in this region during negative NPSST years. This 

process is an important reason for the negative center of the 
triple mode.

Overall, these three predictors contribute to either a 
leading WPSH westward shift or increasing westerlies in 
the mid-latitudes affecting the local VWS, relative humid-
ity, and relative vorticity. Their definitions are shown in 
Table 2. Noticeably, the mechanism of how the GLSICE 
affects the local atmosphere is unclear and requires more 
research in the future. A relatively clear possible mecha-
nism is based on the second predictor, Niño 1 + 2.

Fig. 8   The correlation map of the SON mean 500-hPa geopotential 
height (color shading)/wind anomalies (vectors) with reference to 
0-month lead predictors: a JJA mean GLSICE, c JJA mean minus 
MAM mean Niño 1 + 2 and e JJA mean NPSST of PC2. The correla-

tion map of the SON 700-hPa relative humidity (color shading)/850-
hPa anomalous wind (black vectors)/200-hPa anomalous wind (green 
vectors) with the predictors b JJA mean GLSICE, d JJA mean minus 
MAM mean Niño 1 + 2 and f JJA mean NPSST of PC2

Table 2   Definition of each 
predictors selected for the 
prediction of ACE triple mode

Acronym Meaning Definition

GLSICE The mean of June–July–August
Greenland Sea SIC

MSIC (70° N–80° N, 15° W–0° W)

NPSST The mean of June–July–August
North Pacific SST

MSST (30° N–45° N, 180°–140° W)

Niño 1 + 2 (JJA-
MAM)

The mean of June–July–August minus the 
mean of March–April–May

Niño 1 + 2

DSST (0°–10° S, 90° W–80° W)
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5 � Prediction with P–E models and prediction 
skills

We discuss the two leading EOF modes, which have differ-
ent predictors and possible pathways. This section discusses 
prediction skills and real-time prediction of the spatial dis-
tribution of ACE. There are two steps for predicting ACE 
anomalous patterns. First, we predict each PC of the lead-
ing modes. Second, the sum of two observed spatial EOF 
patterns multiplied by their corresponding predicted PCs 
is used to reconstruct the predicted ACE anomalous field. 
Third, we compute the predicted ACE pattern by adding the 
predicted ACE anomalous field to the long-term mean field.

5.1 � Prediction with the P–E model

Stepwise multilinear regression is used in the process of 
establishing the P–E model. Then the cross-validation 
method makes a retrospective forecast for testing the hind-
cast experiment skills. The predicted PCs are shown in 
Fig. 9a, b. The cross-validated correlation skills between 
the observations and predictions are 0.68 (Fig. 9a) and 0.63 
(Fig. 9b) for all 36 years. The correlation coefficients are 
significant at the 99% confidence level, which means that 
the two leading modes are regarded as predictable. The pre-
dicted PC correlation coefficients with the cross-validated 
predicted PC are 0.88 and 0.94, reaching the 99% confidence 

Fig. 9   The corresponding principal component (PCs) are in a the first 
mode and b the second mode of observation (OBS) data and cross-
validated with physical-empirical predictions by using 0-month lead 
predictors for 1979–2014. The blue lines are PCs, the red lines are 
the prediction of PCs and the cross-valid hindcast of PCs are the 
black lines. c Temporal evolution of the pattern correlation coefficient 
(PCC) skill for the SON ACE distribution over the WNP as a func-
tion of the forecast year using 3-year-out cross-validated P–E model 
predictions (OBS, black lines). The potential attainable forecast skill 

obtained by using the two observed PCs (L0, red lines). The green 
bar is the confidence level on prediction. The numbers indicate the 
long-term mean correlation coefficient for 1979–2014. d Temporal 
correlation coefficient (TCC) skill for the prediction of the SON ACE 
distribution over the WNP. The gray solid circle markers represent 
correlation coefficients significant at the 99% confidence level. The 
gray soft rectangle markers represent correlation coefficients sig-
nificant at the 95% confidence level. The gray soft triangle markers 
notify the grid significant at the 90% confidence level

Table 3   Correlation coefficients between the predictors and the prin-
cipal component of the first mode (PC1) and among the predictors for 
the period 1979–2014

The bolded numbers (above 0.28 or under − 0.28) represent signifi-
cance at the 90% confidence level

PC1 BFSICE Niño 3.4 GASST SWPSST

PC1 1.0 0.41 0.38 0.42 0.52
BFSICE 1.0 0.23 0.21 − 0.34
Niño 3.4 1.0 0.23 − 0.53
GASST 1.0 0.18
SWPSST 1.0

Table 4   The correlation coefficients between the predictors and the 
principal component of the second mode (PC2) and among the pre-
dictors for the period 1979–2014

The bolded numbers (above 0.28 or under − 0.28) represent signifi-
cance at the 90% confidence level

PC2 GLSICE Niño 1 + 2 NPSST

PC2 1.0 0.38 0.29 0.44
GLSICE 1.0 0.00 − 0.32
Niño 1 + 2 1.0 0.24
NPSST 1.0
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level, which means that the prediction is stable over the 
long-term period. The prediction equations are as follows:

The details of the predictor symbols are presented in 
Tables 1 and 2.

Some relationships among predictors in PC1 are inde-
pendent, and the correlation coefficients among predictors 
are listed in Table 3. The correlation coefficient is 0.21 
between BFSICE and GASST, and the correlation coefficient 
is 0.18 between GASST and SWPSST; they show independ-
ent relationships. GASST is also independent of Niño 3.4. 
Therefore, GASST is an independent factor in the prediction 
of the dipole mode. Otherwise, the correlation coefficient 
reaches − 0.53 between Niño 3.4 SST and SWPSST and 
it reaches − 0.34 between BFSICE and SWPSST. These 
results imply that SWPSST partly depends on these two pre-
dictors. Despite the dependency, a precise physical mecha-
nism associated with the anomaly anticyclone circulation at 
850 hPa shows the SWPSST should be a valued predictor 
of the dipole mode. To explore the necessity of using both 
SIC and SST indices in predictions, we use two fields to test 
predictive skills separately. The prediction skill is 0.41 using 
SIC and 0.60 using SST.

Moving onto PC2, we choose the difference in Niño 1 + 2 
between spring and fall as one of the predictors to present 
the El Niño development events. The correlation coefficient 
is 0.00 between GLSICE and Niño 1 + 2 (Table 4). The 
independent relationship between GLSICE and NPSST is 
− 0.32, which is significant at the 90% confidence level, 
indicating that the negative correlation between GLSICE 
and NPSST requires additional studies and that they both 
influence the mid-latitude anomalous westerlies. In the triple 
mode, SST in the southwest Pacific is significant, but we 
excluded this region as a predictor due to the lack of linkage 
with the lower-level wind field. The significant anomalous 
SIC in the East Siberian Sea highly depends on the NPSST 
(the correlation coefficient is − 0.43), and the prediction 
skill does not improvement, regardless of considering these 
two regions. The prediction skill is 0.53 when only SST is 
used to build a predictive equation.

(2)
PC1 = 0.191 × BFSICE + 0.326 × GASST + 0.260

× Niño3.4 − 0.274 × SWPSST.

(3)
PC2 = 0.362 × GLSICE − 0.403 × NPSST + 0.315

× Niño1+2(JJA−MAM).

5.2 � Prediction skills of ACE distribution

In the previous subsection, we note that the P–E models can 
potentially predict the two leading EOF modes. The poten-
tial pattern correlation coefficient (PCC) is shown in Fig. 9c 
and is 0.26 for the 36-year mean. The long-term mean PCC 
skill of prediction is 0.32, which is significant at the 99% 
confidence level (0.26 for 126 grids). The year-to-year vari-
ation is large, with high skill (greater than 0.5) in 1979, 
1991, 1992, 1997, 2001, 2004, 2009 and 2014. Years with a 
low skill (less than 0.0) are 1981, 1984, 1988, 2010, 2011, 
and 2012. We used lag-one autocorrelation to calculate the 
degree of effective freedom (Zwiers and Storch 1995; the 
critical significance level is 0.05 in this study) and tested the 
confidence level. Twenty-two years significant at the 99% 
confidence level, and 10 years (the confidence level is less 
than 90%) predict fails.

Following the PCC skills discussion, the maximum 
attainable temporal correlation coefficient (TCC) skill is 
shown in Fig. 9d. Most grids are significant at the 95% or 
99% confidence level. Highly predictable regions are found 
over East Asia, the SCS and the Philippine Sea, consistent 
with the area where the maximum standard deviation of the 
location on ACE is located (Fig. 1c). These results show 
that the P–E model is skillful in the major region influenced 
by TCs.

To test the predictive validity in real time, we used SST 
and SIC to calculate the ACE distribution in 2015–2017 
using the P–E model. First, we computed the standard devia-
tion of every predictor in 2015–2017. Second, prediction 
equations were used to obtain the coefficient of the two lead-
ing modes. Third, we composited the two leading modes 
using their variance. Finally, the REEP method was used to 
remove the grids with a low prediction skill for TC activity. 
According to the t-test of REEP, the marginal region of TC 
activities mostly passed the test at the 95% confidence level 
(figure not shown).The PCC skills are 0.39, 0.70, and 0.41 
in 2015, 2016, and 2017, respectively, after applying the 
REEP method (the valued grids are 79, 66, 69 in 2015–2017, 
respectively), which are all significant at the 99% confidence 
level (the degrees of effective freedom are 53, 32, and 21 
at 0.05 critical significance level). According to the obser-
vation in Fig. 10, the ACE zonal mode played a leading 
role in 2015 (Fig. 10a), and the recurving track of TCs was 
dominant in 2016 and 2017 (Fig. 10b, c, respectively). The 
prediction in 2015 is shown in Fig. 10d. The PCC skill in 
2016 was the best. The ACE shapes were similar in 2016 
and 2017 (Fig. 10e, f).
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6 � Conclusions and discussion

We researched the prediction of the ACE over the WNP 
and found that the distribution of the ACE can be divided 
into two predictable modes. The first mode represents 
dipole TC activity; the second mode represents triple TC 
activity. In the first mode, the anomalous increase in SIC 
over the Beaufort Sea and the SST warming over the Gulf 
of Alaska force circumglobal teleconnection anomalous 
waves in the Northern Hemisphere, causing the WPSH 
and the mid-Pacific trough to shift to the east. The shift 
in the WPSH and the mid-Pacific trough induces cyclonic 
circulation in the lower troposphere and shifts small VWS 
regions to the east. Moreover, the SST in the southwest 
Pacific and Niño 3.4 induce anomalous anticyclonic circu-
lation over the SCS and anomaly cyclonic circulation over 
the Philippine Sea at 850 hPa. Therefore, the TC activity 
shifts eastward and presents a dipole mode. The second 
mode is mainly caused by the development of eastern 
Pacific El Niño events and the cooling of the North Pacific. 
During the development of El Niño, there are negative 
VWS anomalies over the southeastern and southwestern 
WNP and positive VWS anomalies over the central WNP 
due to the weakened Walker circulation. At the same time, 
the cooling of NPSST may induce an anticyclonic circula-
tion in the lower troposphere, and the positive anomaly 
in GLSICE induces anomalous north winds in the upper 
troposphere over the Philippine Sea. Therefore, TC activ-
ity may be enhanced over the SCS and eastern WNP while 

it is suppressed over the Philippine Sea during the positive 
PC2 years, presenting a triple mode.

Then, we used PMA to build a P–E model of TC ACE. 
To test the prediction skills, mode forecasting skills and 
time series forecasting skills were used. For the mode 
forecasting skill, the long-term mean forecasting skill had 
99% significance. For the time series forecasting skill, 
most regions with frequent TC activity passed the 95% 
significance test, especially in the region near the East 
Asian mainland and the surrounding islands. On the one 
hand, the forecasting skill is significant, which shows that 
the establishment of predictable models is reasonable. On 
the other hand, the ACE in autumn over the WNP can be 
divided into dipole and triple modes.

In this study, we focused on the impact of SST and Arc-
tic sea ice anomalies on the distribution of TC ACE over 
the WNP. These statistically meaningful physical predic-
tors were chosen using only ocean anomalies. The effects 
of some factors, such as GLSICE in PC2, still need to be 
revealed. In the future, a pool of predictors, such as atmos-
pheric elements that can improve the ACE prediction skill, 
needs to be added. In the P–E model, the potentially maxi-
mum PCC skill is 0.32, which is almost consistent with the 
total variance of the interannual variability that accounted 
for 34.73% of the leading two EOF modes. In other words, 
the TC activities are more disordered and have a lower 
potential prediction skill than other weather systems. 
This P–E model is based on the most recent 36 years 
(1979–2014). To use this mode persistently, we need to 

Fig. 10   The a–c observations and the d–f corresponding predictions of the ACE distribution over the WNP from SON in a, d 2015, b, e 2016, c, 
f 2017 (in units of 104 m2/s2)
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amend the P–E model by focusing on climate change in the 
future. Furthermore, this study considers only the 0-month 
lead P–E hindcast forecast, and we should discuss the few-
month lead P–E hindcast forecast in future studies.
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