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By means of the classical symmetry method, we investigate the (2+1)-dimensional Navier-Stokes
equations. The symmetry group of Navier-Stokes equations is studied and its corresponding group
invariant solutions are constructed. Ignoring the discussion of the infinite-dimensional subalgebra,
we construct an optimal system of one-dimensional group invariant solutions. Furthermore, using the
associated vector fields of the obtained symmetry, we give out the reductions by one-dimensional and
two-dimensional subalgebras, and some explicit solutions of Navier-Stokes equations are obtained.
For three interesting solutions, the figures are given out to show their properties: the solution of
stationary wave of fluid (real part) appears as a balance between fluid advection (nonlinear term) and
friction parameterized as a horizontal harmonic diffusion of momentum.
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1. Introduction

Symmetry group techniques provide one method for
obtaining exact solutions of partial differential equa-
tions [1 – 4]. Since Sophus Lie [1] set up the theory of
Lie point symmetry group, the standard method had
been widely used to find Lie point symmetry alge-
bras and groups for almost all the known differential
systems. One of the main applications of the Lie the-
ory of symmetry groups for differential equations is
to get group-invariant solutions. Via any subgroup of
the symmetry group, the original equation can be re-
duced to an equation with fewer independent variables
by solving the characteristic equation. In general, to
each s-parameter subgroup of the full symmetry group,
there will correspond a family of group-invariant solu-
tions. Since there are almost always an infinite num-
ber of such subgroups, it is usually not feasible to list
all possible group-invariant solutions to the system.
That needs an effective, systematic means of classi-
fying these solutions, leading to an optimal system of
group-invariant solutions from which every other such
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solution can be derived. About the optimal systems, a
lot of excellent work has been done by many famous
experts [3 – 7] and some examples of optimal systems
can also be found in Ibragimov [8]. Up to now, sev-
eral methods have been developed to construct optimal
systems. The adjoint representation of a Lie group on
its Lie algebra was also known to Lie. Its use in classi-
fying group-invariant solutions appeared in [3] and [4]
which are written by Ovsiannikov and Olver, respec-
tively. The latter reference contains more details on
how to perform the classification of subgroup under the
adjoint action. Here we will use Olver’s method which
only depends on fragments of the theory of Lie alge-
bras to construct the optimal system of Navier-Stokes
equations.

One of the most important open problems in fluid is
the existence and smoothness problem of the Navier-
Stokes equations, which has been recognized as the ba-
sic equation and the very starting point of all problems
in fluid physics [9 – 10]. Therefore solving Navier-
Stokes equations becomes very important and valuable
but difficult. Here, by means of the classical Lie sym-



X. Hu et al. · Symmetry Reductions in (2+1)-Dimensional Navier-Stokes Equations 505

metry method, we investigate the (2+1)-dimensional
Navier-Stokes equations:

ω = ψxx + ψyy, (1)

ωt + ψxωy −ψyωx − γ(ωxx + ωyy) = 0. (2)

Since the initial derivation of (1) and (2), many au-
thors have been studying them [11 – 14]. Substituting
(1) into (2), we can get

ψxxt + ψyyt + ψxψxxy + ψxψyyy −ψyψxxx

−ψyψxyy − γ(ψxxxx + 2ψxxyy + ψyyyy) = 0.
(3)

So we can investigate (3) instead of Navier-Stokes
equations (1) and (2) in the following sections.

This paper is arranged as follows: In Section 2, by
using the classical Lie symmetry method, we get the
vector fields of the (2+1)-dimensional Navier-Stokes
equation (3). Then the transformations leaving the
solutions invariant, i. e. its symmetry groups are
obtained. In Section 3, after an optimal system of one-
dimensional symmetry group of (3) is constructed, the
corresponding one-parameter and some two-parameter
reductions are given out. Thanks to the Maple, we
can obtain some exact solutions [15 – 17] of (3).
Finally, some conclusions and discussions are given in
Section 4.

2. Symmetry Group of Navier-Stokes Equations

To (3), by applying the classical Lie symmetry
method, we consider the one-parameter group of in-
finitesimal transformations in (x,y,t,ψ) given by

x∗ = x + εξ (x,y,t,ψ)+ o(ε2),

y∗ = y + εη(x,y,t,ψ)+ o(ε2),

t∗ = t + ετ(x,y,t,ψ)+ o(ε2),

ψ∗ = ψ + εΨ(x,y,t,ψ)+ o(ε2),

(4)

where ε is the group parameter. It is required that the
set of equations in (3) be invariant under the trans-
formations (4), and this yields a system of overdeter-
mined, linear equations for the infinitesimals ξ , η , τ ,
and Ψ . Solving these equations, one can have

ξ =
c1x
2

− c3yt − c4y + f (t),

η =
c1y
2

+ c3xt + c4x + g(t),

τ = c1t + c2,

Ψ = g′(t)x− f ′(t)y + h(t)+
c3(x2 + y2)

2
,

where ci(i = 1,2,3,4) are arbitrary constants and f (t),
g(t), and h(t) are arbitrary functions of t. And the as-
sociated vector fields for the one-parameter Lie group
of infinitesimal transformations are v1,v2, · · · ,v7 given
by

v1 =
x
2

∂x +
y
2

∂y + t∂t , v2 = ∂t ,

v3 = −yt∂x + xt∂y +
x2 + y2

2
∂ψ , v4 = −y∂x + x∂y,

v5 = f (t)∂x − f ′(t)y∂ψ ,

v6 = g(t)∂y + g′(t)x∂ψ , v7 = h(t)∂ψ . (5)

Equations (5) show that the following transforma-
tions (given by exp(εvi), i = 1,2, · · · ,7) of variables
(x,y, t,ψ) leave the solutions of (3) invariant:

exp(εv1) : (x,y, t,ψ) �→ (xe
ε
2 ,ye

ε
2 , teε ,ψ),

exp(εv2) : (x,y, t,ψ) �→ (x,y,t + ε,ψ),
exp(εv3) : (x,y, t,ψ) �→(

xcos(tε)− ysin(tε),xsin(tε)

+ ycos(tε), t,ψ +
x2 + y2

2
ε
)

,

exp(εv4) : (x,y, t,ψ) �→
(xcos(ε)− ysin(ε),xsin(ε)+ ycos(ε), t,ψ),

exp(εv5) : (x,y, t,ψ) �→
(x + f (t)ε,y, t,ψ − f ′(t)yε),

exp(εv6) : (x,y, t,ψ) �→
(x,y + g(t)ε, t,ψ + g′(t)xε),

exp(εv7) : (x,y, t,ψ) �→ (x,y,t,ψ + h(t)ε).

(6)

And the following theorem holds:

Theorem 1: If ψ = p(x,y, t) is a solution of (3), so
are the functions:

ψ(1) = p
(

xe−
ε
2 ,ye−

ε
2 , te−ε

)
,

ψ(2) = p(x,y, t − ε),

ψ(3) = p
(

xcos(tε)+ ysin(tε),

−xsin(tε)+ ycos(tε), t
)

+
x2 + y2

2
ε,

ψ(4) = p
(

xcos(ε)+ ysin(ε),−xsin(ε)+ ycos(ε), t
)
,

ψ(5) = p(x− f (t)ε,y, t)− f ′(t)yε,

ψ(6) = p(x,y−g(t)ε, t)+ g′(t)xε,

ψ(7) = p(x,y, t)+ h(t)ε.
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In [18], Clarkson and Kruskal (CK) introduced a di-
rect method to derive symmetry reductions of a nonlin-
ear system without using any group theory. For many
types of nonlinear systems, the method can be used to
find all the possible similarity reductions. Then Lou
and Ma modified CK’s direct method [19 – 22] to find
out the generalized Lie and non-Lie symmetry groups
of differential equations by an ansatz reading

u(x,y, t) = α(x,y,t)+ β (x,y,t)U(ξ ,η ,τ), (7)

where ξ ,η ,τ are all functions of x,y,t. (7) also points
that if U(x,y, t) is a solution of the original differen-
tial equation, so is u(x,y,t). Actually, instead of the
ansatz (7), the general one-parameter group of sym-
metries can be obtained by considering a linear combi-
nation c1v1 +c2v2 +c3v3 +c4v4 +c5v5 +c6v6 +c7v7 of
the given vector fields. But the explicit formulae for the
above transformations are very complicated. Factually,
it can be represented uniquely in the form

g = exp(ε1v1)exp(ε2v2)exp(ε3v3)exp(ε4v4)
· exp(ε5v5)exp(ε6v6)exp(ε7v7).

(8)

Thus, making use of group transformations (8), the
most general solution obtainable from a given solution
p(x,y, t) is in the form (for simplicity, one can do it by
computer algebra):

ψ = −a4

2
(x2 + y2)− (a4a5 f (t)+ a6g′(t))x

+(−a4a6g(t)+ a5 f ′(t))y− 1
2

a4a5
2 f (t)2

− 1
2

a4a6
2g(t)2 + a5a6 f ′(t)g(t)−a7h(t)

+ p(X ,Y,T),

X = a1

[
(cos(a4t)

√
1−a32 −a3 sin(a4t))x

− (sin(a4t)
√

1−a32 −a3 cos(a4t))y

+
√

1−a32(a5 f (t)cos(a4t)−a6g(t)sin(a4t))

−a3(a5 f (t)sin(a4t)+ a6g(t)cos(a4t))
]
,

Y = a1

[
(sin(a4t)

√
1−a32 + a3 cos(a4t))x

+(cos(a4t)
√

1−a32 −a3 sin(a4t))y

+
√

1−a32(a5 f (t)sin(a4t)+ a6g(t)cos(a4t))

+ a3(a5 f (t)cos(a4t)−a6g(t)sin(a4t))
]
,

T = a1
2(t + a2),

where a1,a2, · · · ,a6 are arbitrary constants.

3. Reductions and Solutions of Navier-Stokes
Equations

By exploiting the generators vi of the Lie-point
transformations in (5), one can build up exact solu-
tions of (3) via the symmetry reduction approach. This
allows one to lower the number of independent vari-
ables of the system of differential equations under con-
sideration using the invariants associated with a given
subgroup of the symmetry group. In the following
we present some reductions leading to exact solutions
of the Navier-Stokes equations of possible physical
interest.

Firstly, we construct an optimal system to classify
the group-invariant solutions of (3). As it is said in [4],
the problem of classifying group-invariant solutions re-
duces to the problem of classifying subgroups of the
full symmetry group under conjugation. And the prob-
lem of finding an optimal of subgroups is equivalent to
that of finding an optimal system of subalgebras. Here,
by using the method presented in [3 – 4], we will con-
struct an optimal system of one-dimensional subalge-
bras of (3).

From (5), ignoring the discussion of the infinite-
dimensional subalgebra, one can get the following four
operators:

v1 =
x
2

∂x +
y
2

∂y + t∂ t, v2 = ∂ t,

v3 = −yt∂x + xt∂y +
x2 + y2

2
∂ψ ,

v4 = −y∂x + x∂y.

Applying the commutator operator [vm,vn] = vmvn −
vnvm, we get the following table (the entry in row i and
the column j representing [vi,v j]):

v1 v2 v3 v4
v1 0 −v2 v3 0
v2 v2 0 v4 0
v3 −v3 −v4 0 0
v4 0 0 0 0

Therefore, there is

Proposition 1: The operators vi(i = 1,2,3,4) form
a Lie algebra, which is a four-dimensional symmetry
algebra.



X. Hu et al. · Symmetry Reductions in (2+1)-Dimensional Navier-Stokes Equations 507

To compute the adjoint representation, we use the
Lie series in conjunction with the above commutator
table. Applying the formula

Ad(exp(εv))v0 = v0−ε[v,v0]+
1
2

ε2[v, [v,v0]]−·· · ,

we can construct the following table:
Ad v1 v2 v3 v4
v1 v1 exp(ε)v2 exp(−ε)v3 v4
v2 v1 − εv2 v2 v3 − εv4 v4
v3 v1 + εv3 v2 + εv4 v3 v4
v4 v1 v2 v3 v4

with the (i, j)-th entry indicating Ad(exp(εvi))v j.
Following Ovsiannikov [3], one calls two subalge-

bras v2 and v1 of a given Lie algebra equivalent if
one can find an element g in the Lie group so that
Ad g(v1) = v2, where Ad g is the adjoint representation
of g on v. Given a nonzero vector

v = a1v1 + a2v2 + a3v3 + a4v4,

our task is to simplify as many of the coefficients ai as
possible though judicious applications of adjoint maps
to v. In this way, omitting the detailed computation,
one can get the following theorem by the complicated
computation:

Theorem 2: The operators generate an optimal sys-
tem S

(a) v1 + a4v4,a1 �= 0;

(b1) v3,a1 = 0,a3 �= 0;

(b2) v3 + v2,a1 = 0,a3 �= 0;

(b3) v3 − v2,a1 = 0,a3 �= 0;

(c) v2,a1 = a3 = 0,a2 �= 0;

(d) v4,a1 = a2 = a3 = 0.

Making use of Theorem 2, we will discuss the reduc-
tions and solutions of (3).

3.1. Reductions by One-Dimensional Subalgebras

For case (a), from (v1 + a4v4)(ψ) = 0, i. e.

x
2

ψx +
y
2

ψy + tψt + a4(−yψx + xψy) = 0,

one can get ψ = F(ξ ,η), where ξ = sin(a4 ln(t))√
t x −

cos(a4 ln(t))√
t

y, and η = cos(a4 ln(t))√
t

x + sin(a4 ln(t))√
t

y. Then

(3) is reduced to

2γ(Fξ ξ + Fηη)ξ ξ + 2γ(Fξ ξ + Fηη)ηη

+ ξ (Fξ ξ + Fηη)ξ + η(Fξ ξ + Fηη)η

+ 2a4ξ (Fξ ξ + Fηη)η −2a4η(Fξ ξ + Fηη)ξ

+ 2(Fξ ξ + Fηη)−2Fξ (Fξ ξ + Fηη)η

+ 2Fη(Fξ ξ + Fηη)ξ = 0.

By solving the above equation, one can obtain

F(ξ ,η) = F(ξ ±η i),

where i2 = −1 and F is an arbitrary function of the
corresponding variable.

In case (b1), solving

−ytψx + xtψy− x2 + y2

2
= 0,

it follows

ψ = −x2 + y2

2t
arctan

(
x
y

)
+ F(ξ ,η),

where ξ = x2 + y2 and η = t. Substituting them into
(3), and integrating the reduced equation once about ξ ,
one can have

4γξ η(ξ Fξ ξ ξ +2Fξ ξ )+ξ 2Fξ ξ −ξ ηFξ η −F = 0.

In case (b2) and (b3), solving

−ytψx + xtψy− x2 + y2

2
+ εψt = 0,

it follows

ψ =
t

2ε
(x2 + y2)+ F(ξ ,η),

where ξ = x2 + y2, ε = ±1 and η = 2ε arctan( x
y )+ t2.

And the reduced equation is

8ε5γFηηηη + 8ε4(ξ Fξ Fηηη − ξ FηFξ ηη + FηFηη)

+ 8ε3γ(2ξ 2Fξ ξ ηη + Fηη)

+ 8ε2ξ 2(ξ Fξ Fξ ξ η − ξ FηFξ ξ ξ + Fξ Fξ η −2FηFξ ξ )

+ 8εγξ 2(ξ 2Fξ ξ ξ ξ + 4ξ Fξ ξ ξ + 2Fξ ξ )− ξ 2 = 0.

For case (c), from ψt = 0, one can get ψ = F(x,y),
which indicates a stationary fluid. Then (3) is cast into
the reduced form

Fx(Fxx + Fyy)y −Fy(Fxx + Fyy)x

−γ(Fxx + Fyy)xx − γ(Fxx + Fyy)yy = 0.
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Fig. 1. Stationary circulation with C1 = 0.8, C2 = 0.15, C3 =
C4 = 1.

The above equation has the solution

F(x,y) = C3 +C4 tanh(C1 +C2x +C2yi)

+ C5 tanh2(C1 +C2x +C2yi),

where i2 = −1, and Ci (i = 1,2,3,4,5) are arbitrary
constants. The growth rate of fluid (imagine part of
the solution) tends to be zero when C5 = C4( E2−1

2(E2+1) +
2E2 cos(C2y)2

E4−1 ), E = eC1+C2x, the solution of stationary
wave of fluid (real part) appears as a balance between
fluid advection (nonlinear term) and friction parame-
terized as a horizontal harmonic diffusion of momen-
tum with coefficient γ . Figure 1 shows a stationary
interior ocean circulation with C1 = 0.8, C2 = 0.15,
C3 =C4 = 1, which looks like an anti-cyclonic subtrop-
ical gyre in a closed ocean basin, two cyclonic tropical
and subpolar lows at the north and south, respectively
[23].

In case (d), solving −yψx + xψy = 0, we obtain
ψ = F(ξ ,η), where ξ = x2 + y2 and η = t. Substi-
tuting it into (3) and integrating the reduced equation
twice about ξ , one can get

Fη −4γ(ξ Fξ )ξ = 0.

Solving the above equation, we have the solution of
(3):

ψ = exp(4C1γt)[C2BesselJ(0,2
√
−C1(x2 + y2))

+C3BesselY(0,2
√
−C1(x2 + y2))],

(9)

where Ci (i = 1,2,3) are arbitrary constants.
Figure 2 exhibits the plot of ψ in (9) with

γ = 1, C1 =−1, C2 = 10, C3 = 0, and the time t = 1.

Fig. 2. Plot of ψ in (9) with γ = 1, C1 = −1, C2 = 10, C3 = 0
at t = 1.

3.2. Reductions by Two-Dimensional Subalgebras

Case 1: {v1,v2}. From x
2 ψx + y

2 ψy + tψt = 0 and
ψt = 0, we have ψ = F( x

y ). Substituting it into (3), one
can get

γ
[
(ξ 2 + 1)2Fξ ξ ξ ξ + 12ξ (ξ 2 + 1)Fξ ξ ξ

+ 12(3ξ 2 + 1)Fξ ξ + 24ξ Fξ

]

+ 2(ξ 2 + 1)Fξ Fξ ξ + 4ξ F2
ξ = 0,

where ξ = x
y .

Case 2: {v1,v3}. Solving x
2 ψx + y

2 ψy + tψt =

0 and −ytψx + xtψy − x2+y2

2 = 0, it follows ψ =

− x2+y2

2t arctan( x
y ) + F( x2+y2

t ). Substituting it into (3),
it follows

4γ(ξ 2Fξ ξ ξ ξ +4ξ Fξ ξ ξ +2Fξ ξ )+2ξ 2Fξ ξ ξ +5ξ Fξ ξ = 0.

Case 3: {v1,v4}. From x
2 ψx + y

2 ψy + tψt = 0 and

−yψx + xψy = 0, one can get ψ = F( x2+y2

t ). Substitut-

Fig. 3. Plot of ψ in (10) with γ = 1, C1 = 0, C2 = C3 = 1,
C4 = 0 at t = 0.
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ing it into (3), we have

F ′(Z)+ 8γF ′′(Z)+ 3ZF ′′(Z)+ 16γZF ′′′(Z)

+ Z2F ′′′(Z)+ 4γZ2F ′′′′(Z) = 0,

where Z = x2+y2

t . Solving the above equation, it fol-
lows

ψ = C1 +C2 lnZ +C3Ei
(

1,
Z
4γ

)

−3 ·2 2
3 C4Γ

(
2
3

)∫
Ze−

Z3
4γ Γ

(
1
3
,−Z3

4γ

)
dZ

+ 12C4γ
2
3 Γ

(
2
3

)
ln2 Z +

6
5

2
1
3
√

3C4πγ
1
3 Ze−

Z3
8γ

· WhittakerM
(

1
3
,

5
6
,

Z3

4γ

)
+ 8 ·2 1

3
√

3C4πγ
4
3 Z−2e−

Z3
8γ

· WhittakerM
(

4
3
,

5
6
,

Z3

4γ

)
+ 12C4γ

2
3 Γ

(
2
3

)
lnZ,

(10)

where Ci(i = 1,2,3,4) are arbitrary constants.
Figure 3 exhibits the plot of ψ in (10) with γ = 1,

C1 = 0, C2 = C3 = 1, C4 = 0, and the time t = 0, ap-
pearing an atmospheric subtropical high or monopole
anti-cyclonic blocking in the Northern Hemisphere.

Case 4: {v2,v4}. The solution of ψt = 0 and−yψx +
xψy = 0 has the form ψ = F(x2 +y2). Then the reduced
equation of (3) is

ξ 2Fξ ξ ξ ξ + 4ξ Fξ ξ ξ + 2Fξ ξ = 0,

which has the solution

F = C1 +C2ξ +C3 ln(ξ )+C4ξ ln(ξ ),

where Ci(i = 1,2,3,4) are arbitrary constants and ξ =
x2 + y2.

4. Conclusions

In summary, we investigate the symmetry of the
Navier-Stokes equations by means of the classical Lie
symmetry method. The symmetry algebras and groups
of (3) are obtained. Specially, the most general one-
parameter group of symmetries is given out as the
composition of transforms in the seven various one-
subgroups exp(εv1),exp(εv2), · · · ,exp(εv7) and the
most general solution obtainable from a given solu-
tion p(x,y, t) is gained. Next, we have classified one-
dimensional subalgebras of a Lie algebra of (3). Then
the reductions and some solutions of Navier-Stokes
equations by using the associated vector fields of the
obtained symmetry are given out. By one-dimensional
subalgebras, (3) is reduced to some (1+1)-dimensional
equations and by two-dimensional subalgebras, (3) is
reduced to some ordinary equations. For three interest-
ing explicit solutions of (3), we also give out figures to
show their properties.
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