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Abstract Soliton theory plays an important role in nonlinear physics. The elastic interaction among solitons is one

of the most important properties for integrable systems. In this Letter, an elastic vortex interaction model is proposed.

It is found that the momenta, vortex momenta and the energies of every one vortex and the interaction energies of every

two vortices are conserved.
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It is a well-known fact that the soliton interactions
for most of the integrable systems such as the Korteweg-
de Vries (KdV),[1] modified KdV (mKdV), nonlinear
Schrödinger (NLS), and sine-Gordon (sG) equations are
completely elastic.

In (2 + 1) and (3 + 1)-dimensional cases, as a special
type of solitons, vortices play a very important role in
almost all the natural scientific fields, such as the bio-x
sciences, Earth science, physics, chemistry, optics, fluid
physics, and so on.[2−9]

Especially, for a real atmospheric or oceanic system,
there are many types of complicated abnormal vortices,
which have made increasing destruction for the world over
the past 30 years.[10] The hurricanes,[10−11] tornados,[12]

atmospheric blockings,[13] subtropical high,[14] polar
vortices,[15−16] etc. are all typical vortices. Moreover, sev-
eral vortices of the same type (e.g. two hurricanes) or dif-
ferent types (say, hurricanes and subtropical high), may
simultaneously exist. Thus comes a natural important
question:

How to describe the interactions among the vortices?
In this letter, we focus only on the possible elastic in-

teractions among vortices of (2+1)-dimensional rotating
fluid systems such as the atmospheric and oceanic sys-
tems, which can be described by the nonlinear inviscid
nondissipative and equivalent barotropic vorticity equa-
tion (NINEBVE) in a beta-plane channel[17]

ω = ψxx + ψyy , (1)

ωt + [ψ, ω] + βψx = 0 , (2)

where the velocity ~u = {u1, u2} is determined by the
stream function ψ through u1 = −ψy, u2 = ψx and the
Jacobian operator (or, namely, the commutator) [A,B]
is defined as [A,B] ≡ AxBy − BxAy. When β = 0, the

NINEBVE reduces to the known (2+1)-dimensional Euler
equation (EE), which has been studied by various authors
and many kinds of exact solutions[18] have been found.

In principle, to study the interactions among multiple
vortices, one has to solve out an exact multi-vortex solu-
tion of Eqs. (1)–(2). However, it is very difficult to find ex-
act analytical multiple vortex solutions for the NINEBVE.
In fact, even for the ideal EE case, to find exact analyt-
ical multiple vortex solutions is also not easy. Here we
try to study the multiple vortices in an alternative way by
supposing the following conditions:

(i) Every vortex is localized for the vorticity ωi while
the velocities ψix, ψiy may not be localized.

(ii) Every vortex is an approximate solution of the
NINEBVE when the others are far away from it.

(iii) The whole system, i.e., the system with the total
vorticity and stream function

ω =

N
∑

i=1

ωi , ψ =

N
∑

i=1

ψi , (3)

is an exact solution of the NINEBVE.
According to the above assumptions, substituting

Eq. (3) into NINEBVE (1)–(2), one can easily obtain the
following multiple vortex interaction model (MVIM)

ωi = ψixx + ψiyy , i = 1, 2, . . . , N , (4)

ωit + [ψi, ωi] + βψix +
∑

j=1,j 6=i

[ψi, ωj] = 0 . (5)

It is clear that when we consider the problem near the
i-th vortex {ωi, ψi}, the last term of Eq. (5) is small if the
other vortices are far away from the i-th vortex because
of the localization property of ωj. In addition, the sum-
mation of Eqs. (4) and (5) for i from 1 to N recovers the
total system. This fact implies that the system (4)–(5) is
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equivalent to the following one

ωi = ψixx + ψiyy , i = 1, 2, . . . , N − 1 , (6)

ωit + βψix + [ψi, ω] = 0 , (7)

while the vorticity ω of the total system is determined by
the decoupled system (1)–(2). From the equivalent system
(6)–(7) and (1)–(2), one can conclude that the model is
weak integrable because the existence of the weak Lax pair
of (1)–(2)[11,19] and the linearity of the remained equa-
tions (6)–(7) with respect to the other variables ψi and ωi
whence ω is obtained from the decoupled system.

Applying the standard Lie point symmetry approach
to the MVIM, it is not difficult to find the model is invari-
ant under the transformation with the vector field

V = (cx+ x0)∂x + (cy + y0)∂y − (ct+ t0)∂t

+

N
∑

i=1

(

3cψi + ψi0(t) +

N
∑

k=1

cikψk

)

∂ψi

+

N
∑

i=1

(

3cωi +

N
∑

k=1

cikωk

)

∂ωi
,

N
∑

i=1

cik = 0 , (8)

where x0, y0, t0, c, and cik, i, k = 1, 2, . . . , N are con-
stants and ψi0(t) are arbitrary functions of t. Equation (8)
shows us that the MVIM is space-time translation invari-
ant (x0, y0, and t0 parts), scaling invariant (c part), time
dependent vortex translation (ψi0(t) parts) and singular
(det cij = 0) rotations of the fields ψi and ωi (cij parts).

Now, we are interested in that for the MVIM (4)–(5),
what kinds of physical quantities will be conserved? Es-
pecially, what kind of quantity will be exchanged among
different interacting vortices?

A conservation law (CL) means the existence of the
conserved density ρ and conserved flows J1 and J2 such
that

ρt + J1x + J2y = 0 . (9)

Obviously, all the quantities, which can be expressed by
the differentiations of x and/or y are conserved due to
(Ax)t = (At)x. Therefore, the momenta (with the densi-
ties −ψiy and ψix) and vorticity momenta (with the den-
sity ωi = ψixx + ψiyy) for every vortex are conserved, be-
cause they are really total differentiations of some quan-
tities with respect to x or y.

The important nontrivial conserved quantities are the
energies for every vortex with the conserved densities

Ei ≡
1

2
(u2
i1 + u2

i2) ≡
1

2
(ψ2
iy + ψ2

ix) , (10)

and fluxes

J1i = −ψiψixt −
1

2
ψ2
i (β + ωy) , J2i =

1

2
ψ2
i ωx − ψiψiyt .

It is interesting that in addition to the above energies
for every vortex, the interaction energies between every
two vortices with the conserved densities

Eij ≡ ψixψjx + ψiyψjy , (11)

and fluxes,

J1ij = −ψiψjxt − ψjψixt − ψiψj(β + ωy) ,

J2ij = −ψiψjyt − ψjψiyt + ψiψjωx ,

are also conserved. Naturally, the conserved densities Ei
and Eij imply the conservation of the total energy with

the density,

Etotal ≡

N
∑

i=1

Ei +
∑

j<i

Eij

=
1

2

(

N
∑

i=1

ψix

)2

+
1

2

(

N
∑

i=1

ψiy

)2

. (12)

For the simple EE, it is known that (1/2)ω2 is the

density of the conserved enstrophy. Actually the arbi-

trary function of the vorticity f(ω) is a known conserved

density of the EE. Formally, for the total system of the

NINEBVE, we can also prove that f ≡ f(ω + βy), the

arbitrary function of ω + βy, is a conserved density, and

the related conservation law reads

ft − (fψy)x + (fψx)y = 0 . (13)

However, for the single vortex with {ψi, ωi}, the en-

strophy, (ωi + βy)2, is not a conserved quantity. Besides,

fi ≡ fi(ωi + βy), i = 1, 2, . . . , N are not conserved densi-

ties except for the trivial case when fi are linear functions

of their arguments.

To study the concrete exact solutions, we discussed

some special examples for the ideal fluid without β term.

It is not very difficult to verify that when β = 0, the

MVIM possesses the following weak solutions (r2i ≡ (x −

xi(t))
2 + (y − yi(t))

2, θi ≡ arctan[(y − yi)/(x− xi)])

ψi = ai ln ri , i = 1, . . . , k, (14)

= ai(ln
2 ri − θ2i ) , i = k + 1, . . . , n , (15)

= air
−δi

i sin[δiθi + θi0] i = n+ 1, . . . , j , (16)

= aie
−δiθi sin[δi ln ri + θi0] , i = j + 1, . . . , N , (17)

with arbitrary positive integers k, m, n, j, N , arbitrary

constants ai, δi, θi0 and arbitrary functions xi ≡ xi(t),

yi ≡ yi(t), i = 1, . . . , N and the corresponding vorticity

sources are

ωi = ∆ψi = −2aiπωi0δ(xi)δ(yi) , (18)

with xi ≡ x − xi0, yi ≡ y − yi0, ωi0 = 1, 2 ln(ri),

−δir
−δi sin(δiθi + θi0), and δie

−δiθi cos(δi ln ri + θi0), re-

spectively and δ(xi) being the usual Dirac delta function.

It should be mentioned that all the solutions for the ψi
listed in Eqs. (14)–(17) are weak source solutions. A weak

solution of the model (4)–(5) means that it is an exact

solution at all analytical areas. However, at the singular

source points {xi, yi}, Eqs. (14)–(17) will not result exact

zero identities but the zero distributions.

Point vortex source. The solution (14) is related to the

multiple vortex sources. Figure 1 displays the structure of

such type of single vortex source with the selection

ψ1 = ln r1 , x1 = y1 = 0 . (19)
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Fig. 1 The velocity field plot of the single vortex source
with the stream function (20).

It should be mentioned/emphasized that to see the
stream lines clearly, all the arrows in the figures in this
Letter have the same length.

Vortex dipole source. The solution (15) is related to
the multiple vortex dipole source solution. Figure 2 ex-
hibits the single vortex dipole structure with the stream
function

ψ1 = ln2 r1 − θ21 , x1 = y1 = 0 . (20)

Fig. 2 The single vortex dipole structure of the EE with
the stream function solution (20).

Multi-pole sources. The solution (16) is related to
the multiple vortex-like multi-pole source solution. Fig-
ure 3(a) exhibits the single vortex quadrupole structure
with the stream function

ψ1 = r−2
1 sin(2θ1) =

2xy

(x2 + y2)2
, x1 = y1 = 0 , (21)

and Fig. 3(b) denotes the single vortex six-pole structure
with

ψ1 = r−3
1 sin(3θ1) =

y(3x2 − y2)

(x2 + y2)3
, x1 = y1 = 0 . (22)

Cyclon sources with fractal structures. The solution
(17) displays the structure of the multiple cyclon solution.
We define a negative/positive cyclon as a vortex, which
possesses a hole-like/source-like cycle. In other words, all
the flows of the negative cyclon flow into the cycle while
all those of the positive cyclon are flow out from the cycle.
Figure 4 displays the special cyclon structures with limit
cycles and the corresponding stream functions have the
forms

ψ1∓ = exp(∓2θ(t)) sin(ln(x2 +y2)) , x1 = y1 = 0 , (23)

where the up negative sign “−” is related to the negative
cyclon, and the lower positive sign “+” corresponding to
the positive cyclon.

Fig. 3 The structures of the quadru-pole and six-pole
with the stream functions (21) and (22) respectively.

It is interesting to mention that axes and tick-marks
are removed in Fig. 4 because this kind of solution pos-

sesses a fractal structure. Concretely, if we plot the veloc-
ity field with the stream function (23) at the space regions

x = [−αn, αn] , y = [−αn, αn], α ≡ eπ , (24)

we can find exact same figures as shown in Fig. 4 for ar-
bitrary integer n > 1.

Cyclon dipole sources with fractal structures. Positive
and negative cyclons can be combined to produce many
kinds of dipole sources. Figure 5 exhibits a special cyclon
dipole structure with the stream function ψ1 = ψ1++ψ1−.

Obviously, similar to Fig. 4, one can find exactly same
structures for the cyclon dipole sources when plotting the
velocity field related stream function ψ1+ + ψ1− in the
regions shown in Eq. (24)

In summary, a multiple vortex elastic interaction
model (4)–(5) is proposed for an inviscid nondissipative
and equivalent barotropic vorticity system in a beta-plane
channel. It is found that the model possesses abundant
symmetries and conservation laws. Especially, the self en-
ergy of every vortex and the interaction energy of every
two vortices are conserved. However, the higher order

vorticity moment density ωki , ∀k > 1 for every vortex is
not conserved even for β = 0, though the formally con-
servation law exists with an arbitrary density f(ωeff) that
is an arbitrary function of the total equivalent vorticity
ωeff ≡

∑N

i=1 ωi + βy.
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Fig. 4 (a) The structure of the special negative cyclon
for ψ1− given in Eq. (23); (b) The structure of the special
positive cyclon for ψ1+.

Some types of nontrivial exact weak solutions are ob-
tained for the β = 0 case. In detail, multiple point vortex
source solutions, multiple vortex dipole sources, multiple
vortex multi-pole source solutions, multiple fractal cyclons
and multiple fractal cyclon dipoles are obtained when we
simply consider the zero vorticities ωi = 0. It seems to us
that the multi-pole source solutions, fractal cyclon source
solutions and fractal cyclon dipole sources have not yet
been found before. The cyclon (not cyclone) is defined as
a flow possesses a limit cycle where all flows flow into or
out of the cycle. The fractal cyclon is named if a cyclon

has a self-similar structure. In real nature, there exist var-
ious kinds of vortices, therefore, we hope that these kinds
of vortex solutions might be observed from the real nat-
ural phenomena, or alternatively, from fluid experiments
and other physical fields.

Fig. 5 The structure of a special cyclon dipole with the
stream function is given by ψ1 = ψ1+ + ψ1−.

Though the multiple vortex interaction model is estab-
lished, some kinds of conservation laws have been found
and some special exact source solutions are obtained, var-
ious important problems are still open. For instance, is
there any useful Lax pairs for the MVIM? How to find
exact vortex source solutions of the model for β 6= 0?
How to explore exact multiple analytical non-source solu-
tions both for β = 0 and β 6= 0? How to discover any
other types of exact analytical multiple vortex solutions
with non-constant/non-zero vorticities? How to modify
the MVIM (4)–(5) further to study other possible struc-
tures and interactions of the multiple vortices? Especially,
to apply the model to real vortex physics, the non-elastic
interactions must be involved. Which kinds of vortex in-
teractions can be introduced in the non-elastic interaction
models? All these important problems will be studied in
near future.
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