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By means of the reductive perturbation method, three types of generalized (2+1)-dimensional Kadomtsev–

Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified

KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized

cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP

equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the

relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained.

Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of

generalized KP equations.
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1. Introduction

In recent years, the study of nonlinear partial dif-

ferential equations (PDEs) have become one of the

most exciting and extremely active areas of research.

Many methods can be used to obtain solutions of

PDEs, such as symmetry reductions, the general di-

rect method and the extended Jacobi elliptic function

rational expansion method, and so on.[1−10] However,

there are many difficulties in obtaining solutions of

baroclinic potential vorticity (BPV) equation[11] by

these methods. Luckily, the reductive perturbation

method can make an intricate equation become an-

other new equation, then the intricate equation can

be researched more succesfully with the help of a new

equation. This method has been used in many fields.

Lou et al.[12] derived coupled KdV equations from two-

layer fluids. Tang et al.[13] obtained the variable coef-

ficient KdV equation from the Euler equation with an

earth rotation term. According to the KdV equation,

they obtained the approximate solution of the Euler

equation with an earth rotation term. Gao et al.[14]

presented a coupled variable coefficient modified KdV

equation from a two-layer fluid system. The main pur-

pose of this paper is to obtain the approximate solu-

tions of the BPV equation. The paper is organized as

follows. In Section 2, we obtain generalized modified

Kadomtsev–Petviashvili (mKP), KP and cylindrical

KP (cKP) equations from the BPV equation by means

of the reductive perturbation method. Some KP equa-

tions have been studied by some authors. Li et al.[15]

obtained soliton-like solution and periodic form solu-

tion of a KP equation. Liu[16] gained a solution of

the cKP equation by auto-Backlünd transformation.

Wazwaz[17] obtained multiple-soliton solutions of the

mKP equqtion by the Hirota’s bilinear method. In

Section 3, under certain conditions we obtain the so-

lutions of the generalized cKP and KP equation di-

rectly, and then get an approximate solution of the

BPV equation. In Section 4, by making use of the
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symmetry group direct method proposed by Lou et

al.,[18−21] we establish a relationship between the gen-

eralized mKP equation and mKP equation, and then

based on this relationship we obtain an approximate

solution of the BPV equation by complex and tedious

calculations. In the last section, we give the conclu-

sion of the paper.

2. Generalized mKP, KP and

cKP equations from (3+1)-

dimensional BPV equation

The (3 + 1)-dimensional BPV equation may be

written as

qt + ψxqy − ψyqx + βψx = 0, (1)

q = ψxx + ψyy + ψzz, (2)

where β is constant, ψ ≡ ψ(x, y, z, t), q ≡ q(x, y, z, t),

and subscripts x, y, z, t represent partial derivatives.

First, by substituting Eq. (2) into Eq. (1), BVP

equation becomes:

ψtxx + ψtyy + ψtzz + ψxψxxy + ψxψyyy + ψxψyzz

− ψyψxxx − ψyψxyy − ψyψxzz + βψx = 0. (3)

Now we use the long wave approximation in the x-

direction and z-direction and assume the stream func-

tions ψ to be

ψ = ψ0(y, t) + ψ1(x, y, z, t). (4)

We introduce the stretched variables

X = ϵ(x− c0t), Z = ϵ2(z − c1t), T = ϵ3t, (5)

where X ≡ X(x, t), Z ≡ Z(z, t), T ≡ T (t), c0 and

c1 are constants, ϵ is a small parameter. In general,

the base field ψ0(y, t) is often taken only as a linear

function of y, ψ1(x, y, z, t) is expanded as

ψ1(x, y, z, t) =

∞∑
i=1

ϵiϕi(X, y, Z, T ) ≡
∞∑
i=1

ϵiϕi. (6)

We also have the expansion

ψ0(y, t) = U0(y) +
∞∑
i=1

ϵiUi(y, T ). (7)

Then substituting Eqs. (5), (6) and (7) into Eq. (3),

we obtain

M1ϵ
2 +M2ϵ

3 +M3ϵ
4 +O(ϵ5) = 0, (8)

where

M1 = −U0y(y)ϕ1Xyy + U0yyy(y)ϕ1X

− c0ϕ1Xyy + βϕ1X ,

M2 = ϕ1Xϕ1yyy − c0ϕ2Xyy − U1y(y, T )ϕ1Xyy

− ϕ1Xyyϕ1y − c1ϕ1yyZ + U1yyy(y, T )ϕ1X

− U0y(y)ϕ2Xyy + U0yyy(y)ϕ2X + βϕ2X ,

M3 = ϕ2Xϕ1yyy − c0ϕ3Xyy + U1yyy(y, T )ϕ2X

+ βϕ3X + ϕ1Tyy − U0y(y)ϕ1XXX

+ U0yyy(y)ϕ3X − U2y(y, T )ϕ1Xyy − c0ϕ1XXX

− U0y(y)ϕ3Xyy − U1y(y, T )ϕ2Xyy − c1ϕ2yyZ

+ U2yyyϕ1X + ϕ1Xϕ2yyy + U1yyT (y, T )

− ϕ2Xyyϕ1y − ϕ1Xyyϕ2y.

Vanishing the ϵ2 of Eq. (8) by Maple, we get a special

solution

ϕ1 = A(X,Z, T )G(y, T ) ≡ AG, (9)

where G is determined by

U0yyy(y)G− U0y(y)Gyy − c0Gyy + βG = 0. (10)

Then vanishing the ϵ3 of Eq. (8), we have

ϕ2 = G1(y, T )A(X,Z, T )
2 +G2(y, T )A(X,Z, T )

+ G3(y, T )

∫
AZ(X,Z, T )dX

≡ G1A
2 +G2A+G3

∫
AZ dX, (11)

where G1, G2 and G3 should satisfy

−GyyGy +GGyyy + 2U0yyy(y)G1 − 2U0y(y)G1yy

− 2c0G1yy + 2βG1 = 0,

U1yyy(y, T )G− U1y(y, T )Gyy + βG2 + U0yyy(y)G2

− U0y(y)G2yy − c0G2yy = 0,

U0yyy(y)G3 − U0y(y)G3yy − c0G3yy − c1Gyy

+ βG3 = 0. (12)

Substituting the solutions of Eqs. (10), (12) and ϕ3 =

0 intoM3, integrating the result with respect to y from

0 to y0, then we obtain

a1AT + a2AXXX + a3AAX + a4AAZ + a5A
2AX

+ a6AX

∫
AZ dX + a7

∫
AZZ dX

+ a8AX + a9AZ + a10A+ a11 = 0, (13)

where ai ≡ ai(T ), i = 1, 2, . . . , 11

a1 =

∫ y0

0

∫ y1

0

Gyydydy1,
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a2 =

∫ y0

0

∫ y1

0

(−U0y(y)G− c0G)dydy1,

a3 =

∫ y0

0

∫ y1

0

[2U1yyy(y, T )G1 − 2U1y(y, T )G1yy

− GyG2yy +GyyyG2 +GG2yyy

− GyyG2y]dydy1,

a4 =

∫ y0

0

∫ y1

0

(GyyyG3 − 2c1G1yy −GyG3yy)dydy1,

a5 =

∫ y0

0

∫ y1

0

(−2GyG1yy + 2GyyyG1 +GG1yyy

− GyyG1y)dydy1,

a6 =

∫ y0

0

∫ y1

0

(GG3yyy −GyyG3y)dydy1,

a7 =

∫ y0

0

∫ y1

0

(−c1G3yy)dydy1,

a8 =

∫ y0

0

∫ y1

0

[−U2y(y, T )Gyy + U2yyy(y, T )G

− U1y(y, T )G2yy + U1yyy(y, T )G2]dydy1,

a9 =

∫ y0

0

∫ y1

0

[U1yyy(y, T )G3 − c1G2yy

− U1y(y, T )G3yy]dydy1,

a10 =

∫ y0

0

∫ y1

0

GyyT dydy1,

a11 =

∫ y0

0

∫ y1

0

U1yyT (y, T )dydy1.

Equation (13) contains the following important

cases:

(i) If a4 = 0, a5 = 0, a6 = 0, a8 = 0, a9 = 0,

a10 = 0, a11 = 0, equation (13) becomes a generalized

KP equation

a1AT + a2AXXX + a3AAX

+ a7

∫
AZZ dX = 0. (14)

(ii) If a4 = 0, a5 = 0, a6 = 0, a8 = 0, a9 = 0,

a10 = 0, equation (13) becomes a generalized cKP

equation

a1AT + a2AXXX + a3AAX

+ a7

∫
AZZ dX + a11A = 0. (15)

(iii) If a3 = 0, a4 = 0, a8 = 0, a9 = 0, a10 = 0,

a11 = 0, equation (13) becomes a generalized mKP

equation

a1AT + a2AXXX + a5A
2AX

+ a6AX

∫
AZ dX + a7

∫
AZZ dX = 0. (16)

In the next section, we discuss the solutions of Eq. (3)

with the help of Eqs. (14), (15) and (16) by a direct

method and symmetry group direct method.

3. The solutions of BPV equation

from generalized KP and cKP

equations

In this section, we divide into two parts to obtain

approximate solutions of the BPV equation with the

help of the generalized KP and cKP equations.

First, we set about the generalized KP equation

to obtain the approximate solution of Eq. (3). We

know that equation (14) should satisfy

a4 = a5 = a6 = a8 = a9 = a10 = a11 = 0,

U0yyy(y)AXG− U0y(y)AXGyy − c0AXGyy = 0,

−GyyGy +GGyyy + 2U0yyy(y)G1 − 2U0y(y)G1yy

− 2c0G1yy = 0,

U0yyy(y)G3 − U0y(y)G3yy − c0G3yy − c1Gyy = 0,

U1yyy(y, T )G− U1y(y, T )Gyy + β1G

+ U0yyy(y)G2 − U0y(y)G2yy − c0G2yy = 0. (17)

According to Eq. (17), we obtain G(y, k), G1(y, k),

G2(y, k), G3(y, k), U0(y), U1(y, k) and U2(y, k) after

complicated computing process

G = C8, G1 = C7, G2 = F3(T )(C1y + C2),

G3 = c1F3(T ) + F4(T )(C1y + C2),

U0(y) = −1

6
βy3 +

1

2
C4y

2 + C5y + C6,

Ui(y, k) = 0 (i ≥ 2),

U1(y, T ) =
1

2
C1y

2 + C2y + C3 + F1(T ), (18)

where Ci (i = 1, 2, . . . , 8) are arbitrary constants,

F1(T ), F3(T ) and F4(T ) are arbitrary functions with

respect to time. At the same time, we can obtain a1,

a2, a3 and a7:

a2 =
1

2
C8

(
1

12
βy40 −

1

3
C4y

3
0 − C5y

2
0 − c0y

2
0

)
,

a1 = C8, a3 = 2C1C7y0,

a7 = −c1(c1F3(T ) + F4(T )(C1y0 + C2)). (19)

Then we discuss the solution of Eq. (14), the balanc-

ing procedure yields n = 2 for Eq. (14), therefore, we

may choose

A = f(Z, T ) + f1(T )sech(W1(T )X +W2(T )Z

+W3(T )) + f2(T )sech(W1(T )X

+W2(T )Z +W3(T ))
2,

(20)

Substituting Eq. (20) into Eq. (14), we can get

f(Z, T ), f1(T ), f2(T ), W1(T ), W2(T ), and W3(T ) by

vanishing sech,
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f(Z, T ) = g1(T )Z + g2(T ), f1(T ) = 0, f2(T ) =
12C2

10a
1/3
2

a
1/3
3

,

W1(T ) =
C10a

1/3
3

a
1/3
2

, W2(T ) =

∫
−a3g1(T )W1(T )

a1
dT + C9,

W3(T ) =

∫ (
c21W2(T )

2F3(T )

C8W1(T )
+
c1W2(T )

2F4(T )

C8W1(T )
C1y0 +

c1W2(T )
2F4(T )C2

C8W1(T )
+

2

3
W1(T )

3C4y
3
0

− 2W1(T )C1C7y0g2(T )

C8
+ 2W1(T )

3c0y
2
0 −

1

6
W1(T )

3βy40 + 2W1(T )
3C5y

2
0

)
dT + C11, (21)

where g1(T ), g2(T ) are arbitrary functions of T , C9, C10 and C11 are arbitrary constants. Then, we have

A = g1(T )Z + g2(T ) +
12C2

10a
1/3
2

a
1/3
3

sech(W1(T )X +W2(T )Z +W3(T ))
2. (22)

According to Eqs. (20) and (21), we can obtain one possible approximate solution of Eq. (3) in the form

ψ ≈ U0(y) + ϵU1(y, T ) + ϵϕ1 + ϵ2ϕ2

= U0(y) + ϵU1(y, T ) + ϵAG+ ϵ2
(
G1A

2 +G2A+G3

∫
AZ dX

)
, (23)

where A, G, G1, G2, G3, U0(y) and U1(y, k) satisfy Eqs.(18)–(22).

When we define uncertain parameters, some new soliton solutions can be obtained as shown in Figs. 1(a)

and 1(b).

Fig. 1. Evolution of solutions (23) with the parameters: C1 = 1, β = 1, y0 = 8, ϵ = 0.1, c1 = 1, c0 = 1, g1(T ) = T ,

C6 = 0, C9 = 0, g2(T ) = 0, F1(T ) = T , C8 = 1, C4 = 1, C5 = 1, C7 = 1/12, C11 = 0, C10 = 36/1062/3, F3(T ) = 1,

C2 = 0, F4(T ) = 1/T , C3 = 0..

Next, we discuss the solution of Eq. (3) with the generalized cKP equation. In a similar way, equation (15)

should satisfy

a4 = a5 = a6 = a8 = a9 = a10 = 0,

U0yyy(y)AXG− U0y(y)AXGyy − c0AXGyy = 0,

−GyyGy +GGyyy + 2U0yyy(y)G1 − 2U0y(y)G1yy − 2c0G1yy = 0,

U0yyy(y)G3 − U0y(y)G3yy − c0G3yy − c1Gyy = 0,

U1yyy(y, T )G− U1y(y, T )Gyy + β1G+ U0yyy(y)G2 − U0y(y)G2yy − c0G2yy = 0, (24)
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We obtain the solution of Eq. (24) by tedious cal-

culations,

G1 = P5(T ), G3 = c1P3(T ) + P4(T )(D1y +D2),

G = P5(T )P4(T )D1, G2 = P3(T )(D1y +D2),

U0(y) = −1

6
βy3 +

1

2
D4y

2 +D5y +D6,

U1(y, T ) =
1

2
D1y

2 +D2y +D3 + P1(T ),

Ui(y, T ) = 0 (i ≥ 2), (25)

where Di, i = 1, 2, . . . , 6 are arbitrary constants,

Pi(T ), i = 1, 3, . . . , 5 are arbitrary functions of T .

Then we obtain

a1 = P5(T )P4(T )D1,

a2 =
1

24
P5(T )P4(T )D1y

2
0(βy

2
0 − 4D4y0

− 12c0 − 12D5),

a3 = P5(T )(P4(T )P3(T )D
2
1 + 2D1y0 − 2D2),

a7 = −c21P3(T )− c1P4(T )(D1y0 +D2),

a11 = P5T (T )P4(T )D1 + P5(T )P4T (T )D1. (26)

Now we discuss the solution of Eq. (15). If we let

P4(T ) =
−2(D1y0 −D2)

D1(−1 + P3(T )D1)
,

D4 =
1

4

(−24− 12c0y
2
0 + βy40 − 12D5y

2
0)

y30
, (27)

and P3(T ), P5(T ) satisfy

1

2

c1(−c1P3(T )D1 + c1P3(T )
2D2

1 − 2D2
1y

2
0 + 2D2

2)

D1P5(T )(D1y0 −D2)
=

3σ2
1

T 2
,

(−P5T (T ) + P5T (T )P3(T )D1 − P5(T )P3T (T )D1)

(−1 + P3(T )D1)P5(T )
=

1

2T
, (28)

where σ2
1 = ±1, which also arises in water waves. The

cKP equation is known to be completely integrable.[22]

According to Eqs. (27) and (28), equation (15) be-

comes

AT +AXXX +AAX

+
3σ2

1

T 2

∫
AZZ dX +

1

2T
A = 0, (29)

we know the solution[16] of Eq. (49):

A = 3λ2sech2(ξ),

ξ =
1

2

[
λX − λσ2TZ

2

12

− T (λ4 − λδZ + 3σ2δ
2)

λ
+ γ

]
, (30)

where σ2 = ±1, λ, δ, γ are integral constants. Then

we obtain an approximate solution of Eq. (3):

ψ ≈ U0(y) + ϵU1(y, T ) + ϵϕ1 + ϵ2ϕ2

= U0(y) + ϵU1(y, T ) + ϵAG

+ ϵ2
(
G1A

2 +G2A+G3

∫
AZ dX

)
, (31)

where U0(y), U1(y, T ), G, G1, G2, G3 and A satisfy

Eqs. (25)–(28) and (30).

When we define uncertain parameters, some new

soliton solutions can be obtained. The evolution of so-

lution (31) with some different parameters are shown

in Figs. 2(a) and 2(b).

Fig. 2. Evolution of solution (31) with the parameters:

P1(T ) = 0, λ = 1, ϵ1 = −1, ϵ = 0.1, δ = 1, γ = 1, D3 = 0,

c0 = 1, D2 = 0, y0 = 1, β = 0, D1 = 1, D6 = 0, D5 = 0,

D4 = −0.1.
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4. The solution of BPV equa-

tion from generalized mKP

equation by symmetry group

method

As is well known, the generalized mKP equation

is a universal model for the propagation of weakly non-

linear dispersive long waves which are essentially one

directional with weak transverse effects. There are

many difficulties in obtaining the solution of the gen-

eralized mKP equation, but it is easier to find the

solution of the mKP equation than that of the gener-

alized mKP equation. So we give a theorem to change

the generalized mKP equation into the mKP equation

by a generalized symmetry group method first, then

we can find a more preferable research BPV equation

with the help of the theorem.

First, let

A(X,Z, T ) = vX , (32)

where v ≡ v(X,Z, T ). Substituting Eq. (32) into the

generalized mKP equation, we have

a1vXT + vXXXX + a5vXXv
2
X

+ a6vXXvZ + a7vZZ = 0. (33)

Secondly, let

v = α+ γV (ξ, η, τ) = α+ γV, (34)

where α, γ, ξ, η, and τ are functions of {X,Z, T}, V
satisfies the following equation

Vξξξξ + d1Vξτ + d3VξξV
2
ξ

+ d4VξξVη + d5Vηη = 0, (35)

where d1, d3, d4 and d5 are non-zero arbitrary con-

stants. Substituting Eq. (34) into Eq. (33), then elim-

inating Vξξξξ by using Eq. (35), from that, the re-

mained determining equations of the functions ξ, η,

τ , α, γ can be obtained by vanishing the coefficients

of V and its derivatives. Then the general solution

of the determining equations are found out by tedious

calculations. The result reads

ξ = c2

(
a1τ0T
d1

)1/3

X + ξ0, τ = τ0, γ = δ

√
d3
a5
, η =

√
a5
d3
c22

(
a1τ0T
d1

)2/3
d4Z

a6δ
+ η0,

ξ0 =
(−2a1a5a1T τ0T − 2a21a5τ0TT + 3a21a5T τ0T )

d5d3a26a
2/3
1 τ

2/3
0T d

1/3
1

1

12
c2d

2
4Z

2 + ξ1Z + ξ2,

α = −1

4

∫
a
1/3
1 τ

1/3
0T

(
a26ξ

2
0Zd

2
4d

1/3
1 + 4c2ξ0Ta

4/3
1 τ

1/3
0T a5d

2
4

τ0Ta5d24a1a6
+

4a26ξ
2
0Zd3d5d

1/3
1

τ0Ta5d24a1a6

)
d
1/3
1 c2dZ

− 1

2

a6ξ0Zd
1/3
1 X

c2a
1/3
1 τ

1/3
0T a5

+ α0, (36)

where τ0 ≡ τ0(T ), ξ0 ≡ ξ0(Z, T ), ξ1 ≡ ξ1(T ), ξ2 ≡ ξ2(T ), η0 ≡ η0(T ), α0 ≡ α0(T ), δ = ±1 , and c2 = 1,

−1

2
+

√
3

2
i, −1

2
−

√
3

2
i. At the same time, it should satisfy four conditions:

a7a5d
2
4 − d5d3a

2
6 = 0,

6a1η0T
√
d3a5a

2
6δ(a1τ0T )

1/3d
2/3
1 d4 + (−6a21a5τ0T d

2
4a6T + 4a1a5d

2
4a6a1T τ0T + 4a21a5d

2
4a6τ0TT

+ 3a21τ0T d
2
4a5Ta6)c

2
2Z + 12d5d3a

3
6ξ0Zc2a

2/3
1 τ

2/3
0T d

1/3
1 = 0,

4τ0Ta1Ta5d5d3 − 3a1d
2
4τ0Ta5T + 2d24τ0Ta5a1T + 2a1d

2
4a5τ0TT + 4a1τ0TTa5d5d3 = 0,

3a36ξ0Zd
2
4d5d3a

2/3
1 τ

2/3
0T d

1/3
1 ξ0ZZ + 12d25d

2
3a

3
6ξ0Za

2/3
1 τ

2/3
0T d

1/3
1 ξ0ZZ + 3τ0T d

4
4a

2
1c2a6T ξ0Za5

+ 3τ0T d
4
4a

2
1c2a6ξ0ZTa5 − τ0T d

4
4a1c2a6ξ0Za5a1T − d44a

2
1c2a6ξ0Za5τ0TT

− 3τ0T d
4
4a

2
1c2a6ξ0Za5T + 6c2τ0T ξ0ZTa

2
1a5d

2
4d5d3a6 = 0. (37)

In summery, we obtain the following theorem.

Theorem If U ≡ U(X,Z, T ) is a solution of the mKP equation (35), then

u = α+ γU(ξ, η, τ)

020201–6



Chin. Phys. B Vol. 19, No. 2 (2010) 020201

is the solution of the generalized mKP equation (33)

on the conditions of Eq. (37), where α, γ, ξ, η, τ , δ

and c2 are given by Eq. (36).

According to the Theorem, we will research the

BPV equation easier with the help of the mKP and

generalized mKP equation.

Next, we will write down some types of solutions

of Eq. (3) with the help of the known solutions for the

(2+1)-dimensional mKP equation.

As known to all, mKP equation is

−uT + uXXX − 6uXu
2 − 6uX

∫
uZ dX

+ 3

∫
uZZ dX = 0, (38)

where u ≡ u(X,Z, T ).

Let

d1 = −1, d3 = −6, d4 = −6, d5 = 3, (39)

and replace V (X,Z, T ) with V (ξ, η, τ), equation (35)

becomes

VXXXX − VXT − 6VXXV
2
X

− 6VXXVZ + 3VZZ = 0, (40)

equation (40) is equivalent to Eq. (38) under the trans-

formation u = VX . So we discuss Eq. (40) firstly in

the following.

We know that the mKP equation possesses the

following solution:

u = b(1− tanh(b(X − 2bZ − 16b2T ))), (41)

where b is a non-zero arbitrary constant. According

to the transformation u = VX and Eq. (41), we obtain

the solution of Eq. (40):

V = bX + ln(sech(b(−X + 2bZ + 16b2T )), (42)

according to the Theorem and Eq. (32), we obtain the

solution of the generalized mKP equation,

A =
1

6a6a1τ0c2a5
{6
√
6δ
√
abc22a1τ0(−a1τ0)1/3a6[tanh(b(−X + 2bZ + 16b2T )) + 1]

− 2c2a1a5Z(a1T τ0 + a1τ0TT )− 3ξ1a
2
6(−a1τ0)2/3}, (43)

where a5 is a non-zero arbitrary constant. In order

to obtain the solution of Eq. (3), we need to know

U0(y), U1(y, T ), G, G1, G2 and G3, which should sat-

isfy a3 = 0, a4 = 0, a8 = 0, a9 = 0, a10 = 0, a11 = 0,

Eqs. (10), (12) and (37). After tedious calculations,

we obtain:

G = K1y +K2 +Q5(T ), G1 = Q6(T ),

G2 = Q2(T )K6, G3 = c1Q2(T ) +Q4(T )K6,

U0(y) = −1

6
βy3 +

1

2
K3y

2 +K4y +K5,

U1(y, T ) = K6y +K7 +Q1(T ),

Ui(y, T ) = 0 (i ≥ 2), (44)

where Qi(T ), i = 1, 2, 4, 5, 6 are arbitrary function of

T , Ki, i = 1, 2, . . . , 7 are arbitrary constants. Then we

get

a2 =
1

40
βK1y

5
0 +

1

24
y40(βK2 − 2K3K1)

− 1

6
y30(c0K1 +K4K1 +K3K2)

− 1

2
K2y

2
0(c0 +K4),

a1 = K1y0 +K2, a5 = 4K2
1 ,

a6 = −2K1(c1Q2(T ) +Q4(T )K6),

a7 = −c1(c1Q2(T ) +Q4(T )K6). (45)

From that we obtain an approximate solution of

Eq. (3)

ψ ≈ U0(y) + ϵU1(y, T ) + ϵϕ1 + ϵ2ϕ2

= U0(y) + ϵU1(y, T ) + ϵAG

+ ϵ2
(
G1A

2 +G2A+G3

∫
AZ dX

)
, (46)

where A, G, G1, G2, G3, U0(y) and U1(y, k) satisfy

Eqs. (37), (43)–(44).

5. Summary and discussion

In summary, by the reductive perturbation

method the generalized (2+1)-dimensional modi-

fied Kadomtsev–Petviashvili (mKP), Kadomtsev–

Petviashvili (KP) and cylindrical Kadomtsev–

Petviashvili (cKP) equations are derived from the

baroclinic potential vorticity (BPV) equation. Some

solutions of the KP, mKP and cKP equations are de-

rived by a direct method and symmetry group direct

method. Thus the solution of the generalized mKP

020201–7
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equation can be obtained from the mKP equation.

Furthermore, some approximate solutions of the BPV

equation are obtained from three types of generalized

KP equations.

References

[1] Chen Y and Fan E 2007 Chin. Phys. 16 6

[2] Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15

2765

[3] Yang P, Chen Y and Li Z B 2008 Chin. Phys. B 17 3953

[4] Wang J and Li B 2009 Chin. Phys. B 18 2109

[5] Li J H and Lou S Y 2008 Chin. Phys. B 17 747

[6] Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18

1821

[7] Qian S P and Tian L X 2007 Chin. Phys. 16 303

[8] Zha Q L and Li Z B 2008 Chin. Phys. B 17 2333

[9] Zhang S Q, Xu G Q and Li Z B 2002 Chin. Phys. 11 933

[10] Xia T C, Zhang H Q and Yan Z Y 2001 Chin. Phys. 10

694

[11] Pedlosky J 1979 Geophysical Fluid Dynamics (New York:

Springer)

[12] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys.

A: Math. Gen. 39 513

[13] Tang X Y, Huang F and Lou S Y 2006 Chin. Phys. Lett.

24 887

[14] Gao Y and Tang X Y 2007 Commun. Theor. Phys. (Bei-

jing, China) 48 961

[15] Li B, Chen Y and Zhang H Q 2005 Acta Mech. 174 77

[16] Tang X Y and Lou S Y 2002 Chin. Phys. Lett. 19 1

[17] Abdul-Majid Wazwaz 2008 Appl. Math. Comput. 204 227

[18] Lou S Y and Ma H C 2005 J. Phys. A 38 L129

[19] Lou S Y and Ma H C 2006 Chaos, Solitons and Fractals

30 804

[20] Lou S Y, Jia M, Tang X Y and Huang F 2007 Phys. Rev.

E 75 056318

[21] Lou S Y and Tang X Y 2004 J. Math. Phys. 45 1020

[22] Hereman W and Zhuang W 1995 Acta Appl. Math. 39

361

020201–8


