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a b s t r a c t

In this paper, a multiple vortex interaction model (MVIM) is proposed to describe the
possible stream–vorticity interaction (SVI) and the vorticity–vorticity interaction (VVI)
among vortices. The symmetries and conservation laws of the MVIM show that the
SVI preserves the momenta, the vortex momenta and the energies of every vortex, and
the interaction energies of every two vortices. However, the VVI destroys the energy
conservation property for every vortex. Some special types of exact vortices and vortex
source solutions including multiple point vortices, vortex dipoles, vortex multi-poles,
fractal cyclons, fractal cyclon dipoles and Bessel vortices (BV) are presented. A special
theoretical solution, the first BV is just the usual modon solution which can be used
to describe the so-called atmospheric blocking. The second BV is supported by an
atmospheric observation, saddle field, occurred over the North Pacific on 26 March, 2009.
The characteristic features of vortex interactions are discussed under the MVIM without
the β-effect via numerical simulations. Several interaction patterns such as merging,
separation, mutual orbiting and absorption are reported. Those interaction behaviors
are well consistent with some known fluid mechanical experiments and meteorologic
observations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Vortices are widely existent phenomena in the physical world. The exploration on vortices has a long history reaching
back to the seminal works of Helmholtz and Lord Kelvin [1]. Nowadays, vortices are still arousing consistent interests
from physicists, and appear in various attractive fields of physics, such as Bose–Einstein condensates (BECs) [2], nonlinear
optics [3], fluid physics [4], plasma science [5], condensed matter physics [6], astrophysics [7], etc. Furthermore, vortex
dynamics is not only a rapidly evolving part of physics but also an important subtopic in a wide range of natural scientific
fields, such as the biological sciences, earth science, chemistry, mechanics, and so on [8–25].

Vortex interaction is an exciting topic. The pioneering experimental study on vortex interactions was accomplished by
Fujiwhara in 1921 [26]. For the binary vortex system in a water tank, Fujiwhara noted that if two vortices were equal in
size and strength and spun in the same direction, they would orbit around each other. This type of vortex interactions
was called the Fujiwhara effect afterward. Meteorologic observations confirm that the Fujiwhara effect also exists among
cyclonic vortices. Particularly, the topic of vortex interaction in two-dimensional flow has been investigated intensively
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during the last couple of decades. These investigations have included experimental, numerical as well as analytical studies
and are reported in numerous papers [27–37].

Especially, in an atmospheric or oceanic system, there exist various kinds of vortices such as tropical cyclones including
hurricanes or typhoons [21–24], atmospheric blockings [25], tornadoes [38], subtropical highs [39], polar vortices [40,41]
and so on. It is reported that on average, binary cyclone interaction occurs 1.5 times per year over the western North Pacific
and 0.33 times per year over the Atlantic [42]. Furthermore, the knowledge of vortex interactions in such an atmospheric or
oceanic system has significant practical meaning. For example, it is difficult to predict the tracks of typhoons or hurricanes
when they interact with other tropical cyclones. Thus a better understanding on vortex interactions can help to amend the
predictions of the typhoon or hurricane tracks, and to avoid tremendous destructions.

In this paper, we propose some interactionmodels ofmultiple vortices for the (2+1)-dimensional rotating fluid systems,
such as the atmospheric and oceanic systems, which can be described by the nonlinear inviscid dissipative and equivalent
barotropic vorticity equation (NIDEBVE) in a β-plane channel [43]

ω = 1ψ, ∆ ≡ ∂xx + ∂yy, (1)

ωt + [ψ,ω] + βψx = 0, (2)

where the velocity

u⃗ = {u1, u2}

is determined by the stream function ψ through

u1 = −ψy, u2 = ψx,

and the Jacobian operator [A, B] is defined as

[A, B] ≡ AxBy − BxAy.

When β = 0, the equation system (1)–(2) reduces to the (2 + 1)-dimensional Euler equation (EE) which has received
numerous studies and many kinds of exact solutions [44] have been presented.

In Section 2, we establish the multiple vortex interaction model (MVIM) with stream–vorticity interaction (SVI) and
vorticity–vorticity interaction (VVI). In Section 3, symmetries of the model are studied by using the standard Lie symmetry
approach both for the models with and without VVI. The conservation laws of the models are also studied in Section 3, it
is found that the SVI preserves conservation of both the energies of every vortex and the interaction energy of every two
vortices. In Section 4, some exact vortex source solutions of the models are obtained simply by checking the weak solution
conditions. A special type of analytical vortex solutions, the Bessel vortices, is also given when the VVI must be involved.
We should mention that in our paper [45] we have obtained the same results. Here we just review it for the concreteness
and completeness. After exploring the analytical properties of the MVIM, we turn to the numerical approach in Section 5
for further understanding of the MVIM. The characteristic features of vortex interactions are discussed under the MVIM
without the β-effect via numerical simulations. Several interaction patterns such as merging, separation, mutual orbiting
and absorption are reported and comparedwith some known fluidmechanical experiments andmeteorologic observations.
The last section is a short summary and discussion.

2. A multiple vortex interaction model

In principle, to study the interactions among multiple vortices, one has to obtain an exact multi-vortex solution of
Eqs. (1)–(2). However, it is very difficult to find exact analytical multiple vortex solutions for the NINEBVE. In fact, even
for the ideal EE case, to find exact analytical multiple vortex solutions is still not easy. Here we try to study the multiple
vortices in an alternative way by supposing the following conditions.

(1) Vortex locality. Every vortex is localized for the vorticityωi, while the velocitiesψix andψiy may not be localized. That is

ωi|
√

x2+y2→∞
= 0, {ψiy, ψix}|

√
x2+y2→∞

≠ {0}. (3)

(2) Short range interaction. When two vortices are far away each other, their interactions can be neglected. In other words,
every vortex is an approximate solution of the NINEBVE when others are far away from it.

(3) One–one interaction. The interactions for n-vortices can be approximately divided into the summations of 2-vortex
interactions.

(4) Total system. The whole system, i.e., the system with the total vorticity and stream function

ω =

N
i=1

ωi, ψ =

N
i=1

ψi, (4)

is an exact solution of the NINEBVE.
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According to the above four assumptions, substituting (4) into NINEBVE (1)–(2), one can obtain the following multiple
vortex interaction models (MVIMs)

ωi = ψixx + ψiyy, (5)

ωit +

N
j=1

[ψi, ωj] − C
N
j=1

[ωi, ωj] + βψix = 0, (6)

where [ψi, ωj], j ≠ i denotes the i–jth stream–vorticity interactions (SVI) and [ωi, ωj] denotes the i–jth vorticity–vorticity
interactions (VVI). It is clear that when we consider the problem near the i-th vortex, the SVI and VVI terms are small if the
other vortices are far away from the i-th vortex because of the localization property of ωj. In addition, the summation of
Eqs. (5) and (6) for i from 1 to N recovers the total system (1)–(2). It should be mentioned that other types of interactions,
such as the stream–stream interaction (SSI) like [ψi, ψj] and the higher order VVI (HOVVI) like [ωk

i , ω
k
j ], k > 1, can be

introduced into the model (6). However, the SSI will destroy the assumption (2) due to the nonlocal assumption (1) of the
velocity field, while the HOVVI is omitted because of its complexity (related to 2k-body interaction) and it is smaller than
the order of VVI on account of assumption (3), the locality of the vorticity.

It should be mentioned that because (4) solve the NINEBVE, the arbitrary function C cannot be determined only by
equation system (1)–(2) itself. Actually, one may change the VVI term, −C

N
j=1[ωi, ωj], of (6) as Ci(x, y, t) which can be

considered as the equivalent force of the other vortices to the i-th vortex except for the SVI under the condition
N
i=1

Ci(x, y, t) = 0.

For simplicity, we only take Ci(x, y, t) has the VVI form with constant C . We will point out later that some types of exact
solutions of the model do exist for nonzero C .

3. Symmetries and conservation laws

A symmetry of the system (5)–(6),

σ = {σ
ψ

i , σ
ω
j , i, j = 1, 2, . . . ,N}

is a solution of its linearized equation,

σωi = σ
ψ

ixx + σ
ψ

iyy, (7)

σωit +

N
j=1


[ψi, σ

ω
j ] + [σ

ψ

i , ωj]


− C

N
j=1


[σωi , ωj] + [ωi, σ

ω
j ]


+ βσ
ψ

ix = 0, (8)

that means (5)–(6) is form invariant under the transformation

{ψi, ωi} → {ψi, ωi} + ϵ{σ
ψ

i , σ
ω
i }

with an infinitesimal parameter ϵ.
For the Lie point symmetries, we have

σωi = Xωix + Yωiy + Tωit −Ωi, (9)

σ
ψ

i = Xψix + Yψiy + Tψit − Ψi, (10)
where X, Y , T ,Ωi and Ψi are functions of x, y, z, t, ψi and ωi.

Substituting (9)–(10) into (7)–(8) and eliminating ωi and ψiyy via (5)–(6) yield the determining equations of X, Y , T ,Ωi
and Ψi which possess the solutions

X = cx + x0, Y = cy + y0, T = −ct − t0,

σ
ψ

i = 3cψi + ψi0(t)+

N
k=1

cikψk,

σωi = 3cωi +

N
k=1

cikωk, (11)

where x0, y0, t0, c and cik, i, k = 1, 2, . . . ,N are constants with the conditions
N
i=1

cik = 0, (12)

cC = 0 (13)
and ψi0(t) are arbitrary functions of t .
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The equivalent vector form of the symmetries can be written as

V = (cx + x0)∂x + (cy + y0)∂y − (ct + t0)∂t +

N
i=1


3cψi + ψi0(t)+

N
k=1

cikψk


∂ψi

+

N
i=1


3cωi +

N
k=1

cikωk


∂ωi . (14)

Eq. (14) shows us that the MVIM without VVI is space–time translation invariant (x0, y0 and t0 parts), scaling invariant
(c part), time dependent vortex translation (ψi0(t) parts) and singular (det cij = 0) rotations of the fields ψi and ωi
(cij parts). For nonzero C , the scaling symmetry is destroyed because of the condition (13).

Now, we are interested in that for the MVIM (5)–(6), what kinds of physical quantities are conserved? Especially, what
kind of quantity will be exchanged among different interacting vortices?

A conservation law (CL) means the existence of the conserved density ρ and flows J1 and J2 satisfying
ρt + J1x + J2y = 0. (15)

Obviously, all the quantities expressed by the differentiations of x and/or y are conserved due to (Ax)t = (At)x. Therefore,
the momenta (with the densities −ψiy and ψix) and the vorticity momenta (with the density ωi = ψixx + ψiyy) for every
vortex are conserved, because they are really total differentiations of some quantities with respect to x or y.

For the vanishingVVI case, the important nontrivial conserved quantities are the energies for every vortex and interaction
energies for every two vortices.

Theorem 1 (Energy Conservation Theorem). The MVIM without VVI possesses the conserved energy densities

Ei ≡
1
2
(u2

i1 + u2
i2) ≡

1
2
(ψ2

iy + ψ2
ix) (16)

for every vortex and the interaction energy density

Eij ≡ ψixψjx + ψiyψjy (17)

for every two vortices.
Proof.

Eit = ψiyψiyt + ψixψixt

= (ψiψiyt)y − ψiψiyyt + (ψiψixt)x − ψiψixxt

= (ψiψiyt)y + (ψiψixt)x − ψiωit

= (ψiψiyt)y + (ψiψixt)x + ψi {[ψi, ω] − C[ωi, ω] + βψix}

= (ψiψiyt)y + (ψiψixt)x +
1
2


ψ2

i ωy

x −

1
2


ψ2

i ωx

y − Cψi[ωi, ω] +

1
2
β(ψ2

i )x

=
1
2
(2ψiψiyt − ψ2

i ωx)y +
1
2
(2ψiψixt + ψ2

i ωy + βψ2
i )x − Cψi[ωi, ω]. (18)

From the last step it is clear that Ei is a conserved density if and only if C = 0 and the corresponding fluxes possess the forms

J1i = −ψiψixt −
1
2
ψ2

i (β + ωy), J2i =
1
2
ψ2

i ωx − ψiψiyt . (19)

Similarly, for the interaction energy density Eij we have,

Eijt = ψiyψjyt + ψjyψiyt + ψixψjxt + ψjxψixt

= (ψiψjyt + ψjψiyt)y − ψiψjyyt − ψjψiyyt + (ψiψjxt + ψjψixt)x − ψiψjxxt − ψjψixxt

= (ψiψjyt + ψjψiyt)y + (ψiψjxt + ψjψixt)x − ψiωjt − ψjωit

= (ψiψjyt + ψjψiyt)y + (ψiψjxt + ψjψixt)x

+ψi

[ψj, ω] − C[ωj, ω] + βψjx


+ ψj {[ψi, ω] − C[ωi, ω] + βψix}

= (ψiψjyt + ψjψiyt − ψiψjωx)y + [ψiψjxt + ψjψixt + ψiψj(ωy + β)]x − Cψi[ωj, ω] − Cψj[ωi, ω]. (20)

From the last equation, we know that the interaction energy is conserved iff the VVI is neglected while the corresponding
fluxes read

J1ij = −ψiψjxt − ψjψixt − ψiψj(β + ωy),

J2ij = −ψiψjyt − ψjψiyt + ψiψjωx.

Thus, the theorem is proved. �
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Naturally, the conserved densities Ei and Eij imply the conservation of the total energy with the density

Etotal ≡

N
i=1

Ei +

j<i

Eij

=
1
2


N
i=1

ψix

2

+
1
2


N
i=1

ψiy

2

. (21)

From the theorem we know that for nonzero VVI, C ≠ 0, there is no additional conserved quantities except for those of the
total system. Thatmeans the energy exchanges among interacting vortices are introduced by the VVI but not the SVI. In other
words, the SVI interaction preserves the energy of the interacting vorticity while the VVI destroys the energy conservation
for every single vortex.

4. Exact special vortices and vortex source solutions

To study the concrete exact solutions, we discuss some special examples with and without β term.

4.1. Vortex sources for β = 0 case

It is not very difficult to verify that the irritating MVIM possess the following exact solutions (r2i ≡ (x − xi0)2 + (y −

yi0)2, θi ≡ arctan y−yi0
x−xi0

)

ψi = ai ln ri, i = 1, . . . , k,

ωi = −2aiπωi0δ(xi)δ(yi), (22)
ψi = ai(ln2 ri − θ2i ), i = k + 1, . . . ,m,

ωi = −4aiπ ln(ri)δ(xi)δ(yi), (23)

ψi = air
−δi
i sin(δiθi + θi0), i = m + 1, . . . , n,

ωi = 2aiπδir−δi sin(δiθi + θi0)δ(xi)δ(yi), (24)

and

ψi = aie−δiθi sin(δi ln ri + θi0), i = n + 1, . . . ,N,

ωi = 2aiπδie−δiθi cos(δi ln ri + θi0)δ(xi)δ(yi) (25)

with arbitrary positive integers k,m, n,N , arbitrary constants ai, δi, arbitrary functions xi0 ≡ xi0(t), yi0 ≡ yi0(t), i =

1, . . . ,N , and xi ≡ x − xi0, yi ≡ y − yi0.
It has to be explained that the sources solutions (22)–(25) are weak solutions of the model. A weak solution of the model

(5)–(6) means that it is an exact solution at all analytical areas. However, at the singular source points {xi, yi}, (22)–(25) will
not result exact zero identities but the zero distributions. For instance, for the case bothψi andψj are given by (23), the zero
distributions, Pij, read

Pij =
4πai
r2i

(yiyi0t + xixi0t) [δ(xi)δ(yi)+ ln(ri)∆i] −
a2i θi
r2i

[3δ(xi)δ(yi)+ ln(ri)∆i]

−
aiaj
r2i r

2
j


(xiyj − xjyi) ln(ri)+ (xixj + yiyj)θi

 
3δ(xj)δ(yj)+ ln(rj)∆j


+

16π2aiajC
r2i r

2
j

(xiyj − xjyi) [3δ(xi)δ(yi)+ ln(ri)∆i]

3δ(xj)δ(yj)+ ln(rj)∆j


(26)

where∆i ≡ xiδ′(xi)δ(yi)+ yiδ(xi)δ′(yi) and δ′(xi) is the derivative of the Dirac delta function with respect to its argument.
We call Pij zero distribution because

+∞

−∞


+∞

−∞

f (x, y)Pijdxdy = 0 (27)

is satisfied for arbitrary function f (x, y).
From (26), one can know that the sources (22)–(25) are really weak solutions of the models (5)–(6) no matter the VVI is

involved or not. The only difference is that the zero distribution will have an additional term, say, the last term of (26).
The solutions (22)–(25) are all vortex source solutions. The first type expressed by Eq. (22) is well known in the

literature [44] as the point vortex source similar to the magnetic line of an infinitely long wire.
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Fig. 1. A single vortex dipole structure of the EE with the stream function solution (28).

Fig. 2. A six-pole structure determined by Eq. (29).

Fig. 3. The structure of a special negative cyclon for ψ1− given in Eq. (30).

The solution (23) is related to the multiple vortex dipole source solution. Fig. 1 exhibits a single vortex dipole structure
with the stream function

ψ1 = ln2 r1 − θ21 , x1 = y1 = 0. (28)

It is noted that to make the stream lines clearly, all the arrows in the figures in this paper have the same length except
for Figs. 4 and 5.

The solution (24) is associated with the multiple vortex-like multi-pole source solution. For instance, δi = 2 and 3 of
Eq. (24) describe the single vortex quadruple and six-pole structures, respectively. Fig. 2 denotes a special six-pole structure
with

ψ1 = r−3
1 sin (3θ1) =

y(3x2 − y2)
(x2 + y2)3

, x1 = y1 = 0. (29)

The solution (25) displays the structure of a multiple cyclon solution. We define a negative/positive cyclon as a vortex
possessing a hole-like/source-like cycle. In other words, all the flows of a negative cyclon flow into the cycle, while flow out
for a positive cyclon. Fig. 3 displays a special negative cyclon structure with a limit cycle in which the stream function reads

ψ1∓ = exp (∓2θ) sin(ln(x2 + y2)), x1 = y1 = 0 (30)
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Fig. 4. The second BV with quadrupole structure (32) with N = a1 = C = 1, xi0 = yi0 = t = 0, c1 = 2.

Fig. 5. Geopotential height (contour) and velocity (vector) fields at 850 hPa occurred on 26 March 2009.

for the up sign ‘‘−’’. The lower positive sign ‘‘+’’ is corresponding to a positive cyclon, which has a similar structure as
displayed in Fig. 3 but with an opposite rotation.

It is interesting to mention that the axes and tick-marks are removed in Fig. 3 because this typical solution possesses a
fractal structure. Concretely, if we plot the velocity field with the stream function (30) at the space regions

x = [−αn, αn
], y = [−αn, αn

], α ≡ eπ , (31)

we can find the exactly same figures as shown in Fig. 3 for an arbitrary integer n > 1.
Positive and negative cyclons can be combined (say, ψ1 = ψ1+ + ψ1−) to produce various cyclon dipole sources.

4.2. Bessel vortices for β ≠ 0 case

For the rotating fluid (nonzero β case), one can find the following type of Bessel-vortex (BV) solutions

ψi = ai sin(ciαi + bi)Jci(ρi/
√
C), i = 1, . . . ,N (32)

with the corresponding vorticitiesωi = −ψi/C , where ai, bi, ci are arbitrary constants, Jci(x) is the ci-th order Bessel function
and C is just the strength constant of the VVI, andαi = arctan[(y−yi0)/(x−Cβt+xi0)], ρi =


(x − Cβt + xi0)2 + (y − yi0)

with constants xi0, yi0.
To prove the correctness of (32) one can first introduce the moving coordinate {x′

= (x − Cβt + xi0), y′
= y − yi0}, and

then it is not difficult to find the result by using the variable separation approach under the polar coordinate.
The ci-th BV denotes multi-pole vortex solutions which may be used to describe a variety of real phenomena in

atmospheric and oceanic dynamics. For instance, the first BV (ci = 1) is called modon. The concept modon is usually used to
describe an atmospheric blocking which is responsible for some disasters such as the floods, drought, snow storm, etc. [46].

The 2nd BV is a quadrupole vortex solution as shown in Fig. 4 for N = a1 = C = 1, xi0 = yi0 = t = 0, c1 = 2. Similar
vortex structures can be observed in the rotating fluids. Fig. 5 displays a saddle field in atmosphere occurred at mid-latitude
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over the North Pacific on 26 March, 2009, appearing two cyclonic lows (light gray) and anticyclonic highs (heavy gray).
Investigating the larger scale atmospheric circulation before and after this date, it is found that the 2nd BV pattern seems
coming from a Rossby wave train at a sphere with strong synoptic eddies traveling split northward and southward before
an atmospheric blocking formed.

5. Characteristic features of vortex interactions under the MVIM without the β-effect

By this far we have studied the analytical properties of the MVIM. In this section, we go further to show that some
observed patterns of the atmospheric vortex interactions can be derived from the numerical results of the MVIM. We do
not consider the β effect here, since the barotropic vorticity equation with finite beta does not have stationary monopolar
vortex solutions as demonstrated in several papers.

In our numerical simulations, the initial profile of vortex is given by

ψ = y0tx − x0ty − A

2 + 2

r
rm

+
r2

r2m


e−

r
rm , (33)

where r =

(x − x0)2 + (y − y0)2. x0 and y0 are arbitrary functions of t , which denote the central position of the vortex

at time t . This vortex is first used to describe the shape of a tropical cyclone (TC) and the tract of the TC eye in a pioneering
work [24]. In [47], the author explains the variety of tracks of TC based on a mathematical model. The absolute value of A
denotes the intensity of the vortex, and if A is positive, the vortex is anti-clockwise (TC in the northern hemisphere); if A is
negative, the vortex is clockwise (TC in the southern hemisphere). rm is a positive constant that controls the radius of the
vortex. The size of the vortex increases as rm is getting larger. The first two terms on the right-hand-side of (33) represent
the background flow in which the vortex is embedded. If the background flow is eliminated, a pure vortex can be obtained
as

ψ = −A

2 + 2

r
rm

+
r2

r2m


e−

r
rm . (34)

The expression (33) is an exact solution of the (2+1)-dimensional Euler equation, which is obtained via the symmetry group
transformation method [24]. Here we neglect the influence of background flow and use expression (34) as initial condition.

In Fig. 6 we depict the evolution of the stream function of a single vortex form t = 0 to t = 1000. The lines denote
the contours of the stream function, and the heavier the line’s color is, the smaller the height is. The direction of an arrow
denotes the direction of the velocity of the stream at that point, while the length of the arrow denotes the absolute value
of the velocity. (The meanings of the contour lines and arrows are the same for the following figures in this work.) It shows
clearly that if there are no outside influences, the vortex can keep its shape for a very long time. All the numerical simulations
in this paper are implemented via the PDE-module of the finite element software COMSOL multiphysics 3.5.

5.1. Interactions between two equal vortices

An intensive investigation of the interactions between two vortices is a groundwork for further studies which involves
more vortices. From the MVIM mentioned in Section 1, a binary vortex interaction model (BVIM) can be derived as

ω1 = 1ψ1,

ω1t + [ψ1, ω1] + [ψ1, ω2] + C[ω1, ω2] = 0,
ω2 = 1ψ2,

ω2t + [ψ2, ω2] + [ψ2, ω1] + C[ω2, ω1] = 0, (35)

where∆ is the two-dimensional Laplacian, and β has been chosen as zero.
First, we study interactions between two equal vortices

ψ1 = −A

2 + 2

r1
rm

+
r21
r2m


e−

r1
rm , (36)

ψ2 = −A

2 + 2

r2
rm

+
r22
r2m


e−

r2
rm , (37)

where r1 =

(x − x10)2 + (y − y10)2, r2 =


(x − x20)2 + (y − y20)2. The two vortices have the same radius and intensity,

and they spin in the same direction, yet their initial positions are different.
In numerical simulations, we find that there exists a separation distance, which is an important threshold for the binary

interaction behavior. If the distance between the centers of the two vortices is smaller than the separation distance, the two
vortices will begin orbiting around each other, and gradually combine. At last, they merge into a single vortex which has
larger size. If the distance between the centers of the two vortices is larger than the separation distance, they will separate.
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(a) t = 0. (b) t = 1000.

Fig. 6. Evolution of a single vortex (34) with x0 = y0 = 10, A = 1, rm = 1. The vortex keeps its shape without outside influences. The lines denote the
contours of the stream function, and the heavier the line’s color is, the smaller the height is. The direction of an arrow denotes the direction of the velocity
of the stream at that point, while the length of the arrow denotes the absolute value of the velocity. (The meanings of the contour lines and arrows are the
same for the following figures in this work.)

During the separation, they keep orbiting around each other and, the angular velocity of their movement decreases as the
distance between their centers increases. Finally, the two vorticeswill stop orbiting each other. Actually, if the initial distance
between the centers of the two vortices is large enough, the interactions between them can be completely neglected. This
fact shows that the binary vortex interactions implied in the BIVM are local, not global. We also find that if the self-rotation
of the two vortices is anti-clockwise, their mutual orbiting movement is also anti-clockwise.

The separation distance is related to the size and the intensity of each vortex. In simulations, we find that the separation
distance increases as the radius of each vortex increases. The effects of intensity are similar to that of the radius, yet it is less
obvious. So we conjecture that the separation distance mainly relates to the influential range of each vortex.

We also find that the coefficient C in the BIVM (35) has very small influence on the binary interaction behaviors. This fact
suggests that the stream–vorticity interactions dominated the interaction patterns. So the high order nonlinear effects, that
is, the vorticity–vorticity interactions, can be neglected in the BIVM when the vortices do not overlap.

In Fig. 7, the evolution of an initial configuration given by (36)–(37) is depicted, where we have set A = rm = 1, x10 =

27.2, x20 = 33 and y10 = y20 = 30. Under this setting, the initial distance between the centers of the two vortices is
5.8. It can be seen that, the two vortices at first orbit around each other, then combine, and finally merge. A new vortex
with larger size and intensity is generated. For the second simulation, we set x10 = 27 and keep all other parameters
invariable. In this case, the initial distance between the centers of the two vortices is 6, which is larger than that in the
first simulation. This time, the two vortices separate, which can be seen clearly in Fig. 8. The evolution also shows that the
two vortices are mutually orbiting around each other anti-clockwise during the separation, while each vortex spins anti-
clockwise. Meanwhile, the angular velocity of their mutual orbiting is decreasing. It can be seen that from t = 0 (Fig. 8(a))
to t = 40 (Fig. 8(d)) the rotation of each vortex around their centroid is almost 90°, while from t = 60 (Fig. 8(e)) to t = 100
(Fig. 8(f)) the rotation is trivial. From the first two simulations we conjugate that the separation distance of the two vortices
(36)–(37) with A = rm = 1 is between 5.8 and 6.

The third simulation is depicted in Fig. 9, in which the initial distance between the centers of the two vortices is 10. The
corresponding x-positions are x10 = 25, x20 = 35, and all other parameters are unchanged. The evolution of the initial
configuration shows that when the initial distance between two vortices is larger, the interactions between them are very
weak. The separation velocity of the two vortices is slow and, the angular velocity of their mutual orbiting is also less than
that observed in the second simulation.

For the fourth simulation in this section, we show that the separation distance depends on the size of each vortex. In
Fig. 10, we show the evolution of two larger vortices, with rm = 1.75, A = 1, x10 = 25, x20 = 35 and y10 = y20 = 30.
The initial distance between these two vortices is 10. In Fig. 9, we show that under this initial distance vortices having
smaller radius display very weak binary interactions, yet two larger vortices do emerge as it is depicted in Fig. 10. Similarly,
the intensity of each vortex will also affect the separation distance. If the intensity is reduced for each vortex, their binary
interaction will become weaker. In this case, the separation distance will be smaller.

Our numerical results are well consistent with some known phenomena in meteorology, introduced by a lot of
experiments, observations and theoretical studies that described the binary interaction between two tropical cyclones. The
most obvious phenomenon exhibited in all these four simulations is themutual orbiting, that is the famous Fujiwhara effect.
Since it was first revealed by fluid mechanics experiments in water tank [26], the Fujiwhara effect has been developed to be
a central concept which describes the interactions of binary tropical cyclones. In the western North Pacific typhoon season,
the Fujiwhara effect happens frequently between two typhoons owing to the greater number of tropical cyclones there.
The Fujiwhara effect also happens between two hurricanes in the eastern North Pacific or in the North Atlantic. In Fig. 11,
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(a) t = 0. (b) t = 10.

(c) t = 30. (d) t = 60.

Fig. 7. Evolution of two vortices (36) and (37) with x10 = 27.2, x20 = 33, y10 = y20 = 30, A = 1, rm = 1. The coefficient C in the BIVM (35) is set to 1.
The two vortices gradually merge in this case.

the satellite image of two interacting hurricanes is shown, where Hurricane Ione (left) and Hurricane Kirsten (right) are
displaying the Fujiwhara effect at August 24, 1974. The image is downloaded from the web given in [48].

In Ref. [49], Lander and Holland made a detailed analysis of the observed behavior of interacting cyclonic vortices in the
western North Pacific region. Besides the classical Fujiwhara effect, they pointed out that a series of interactions including
cyclone merging and escaping take place during the interaction of cyclones. They showed that there exists a threshold
distance (which is called separation distance in their work) for the interactions of cyclones. If the distance between two
cyclones is smaller than the separation distance, they tend to combine, or they will escape from each other. The numerical
results of our BIVMmodels in this section are well consistent with their analysis. We also show that the separation distance
relates to the size and intensity of each vortex.

5.2. Interactions between two nonequal vortices

Now we study the binary interactions between two nonequal vortices

ψ1 = −A1
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rm1

+
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rm1 , (38)
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where r1 =

(x − x10)2 + (y − y10)2, r2 =


(x − x20)2 + (y − y20)2. The two vortices have different radiuses and

intensities, which are controlled by rmi and Ai (i = 1, 2) respectively.
Basically, the binary interactions of two nonequal vortices are similar to that of two equal ones. The interaction behaviors

such as merging, mutual orbiting and separation also exist. However, these behaviors will be affected to some degree as the
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(a) t = 0. (b) t = 10. (c) t = 30.

(d) t = 40. (e) t = 60. (f) t = 100.

Fig. 8. Evolution of two vortices (36) and (37) with x10 = 27, x20 = 33, y10 = y20 = 30, A = 1, rm = 1. The coefficient C in the BIVM (35) is set to 1. The
two vortices separate in this case.

(a) t = 0. (b) t = 200.

Fig. 9. Evolution of two vortices (36) and (37) with x10 = 25, x20 = 35, y10 = y20 = 30, A = 1, rm = 1. The coefficient C in the BIVM (35) is set to 1. The
binary vortex interaction is weak.

two vortices are different in a few aspects, and new interaction patterns thus emerge. An easily observed interaction pattern
is absorption, which usually happens between two vortices with different intensities.

In Fig. 12 the evolution of an initial configuration given by (38)–(39) is depicted, where we have set x10 = 25, x20 =

35, y10 = y20 = 30, A1 = 1, A2 = 2/3 and rm1 = rm2 = 1.75. Under this setting, the two vortices have the same size, the
initial distance between their centers is 10, and the intensity ratio is 1.5. It can be seen clearly that the vortex with smaller
intensity is absorbed into the one with larger intensity. This kind of absorption can also happen between two vortices with
different sizes. For the second simulation, we set x10 = 25, x20 = 35, y10 = y20 = 30, A1 = 1, A2 = 0.5, rm1 = 1, rm2 = 2.
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(a) t = 0. (b) t = 75.

(c) t = 150. (d) t = 200.

Fig. 10. Evolution of two vortices (36) and (37) with x10 = 25, x20 = 35, y10 = y20 = 30, A = 1, rm = 1.75. The coefficient C in the BIVM (35) is set to 1.
The separation distance increases as the size of each vortex increases.

Fig. 11. Hurricane Ione (left) and Hurricane Kirsten (right) are displaying the Fujiwhara effect at August 24, 1974.

From the evolution depicted in Fig. 13 we can see that the smaller vortex is strengthened and enlarged while the larger one
gradually shrank. According to this, we suppose that the process of absorption ismainly dominated by the vortexwith larger
intensity. The absorption of a weaker cyclone into a stronger one is also observable in meteorology. For example, a tropical
cyclone was absorbed by Hurricane Lisa in 2004, which has been described in the Tropical Cyclone Report [50].

5.3. Interactions between a cyclonic vortex and an anticyclonic vortex

By far we are confined to interactions of two vortices spinning in the same direction. It is also an important issue to
investigate interactions of two vortices which spin in different directions. In the northern hemisphere, a cyclonic vortex
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(a) t = 0. (b) t = 50.

(c) t = 100. (d) t = 150.

Fig. 12. Evolution of two nonequal vortices (38) and (39) with x10 = 25, x20 = 35, y10 = y20 = 30, A1 = 1, A2 = 2/3, rm1 = rm2 = 1.75. The coefficient
C in the BIVM (35) is set to 1. The vortex with smaller intensity is absorbed into the one with larger intensity.

spins anticlockwise, while an anticyclonic vortex spins clockwise. It is a crucial problem to study interactions between a
cyclone and an anticyclone in meteorology, owing to the high possibility of this kind of interactions. For example, a typhoon
(cyclonic vortex) in the western North Pacific is often affected by a subtropical high (anticyclonic vortex). Now wemove on
to study the interactions between a cyclonic vortex and an anticyclonic vortex.

In Fig. 14 we show the effect of a subtropical high on a cyclonic vortex. We use a large vortex spinning clockwise to
denote the subtropical high in the northern hemisphere. Its mathematical expression is given by (38) with x10 = 40,
y10 = 40, A1 = −1, rm1 = 3. The small vortex spinning anticlockwise denotes the cyclone, which is given by (39) with
x20 = 55, y20 = 25, A2 = 1, rm2 = 1. The cyclone locates at the lower right of the subtropical high. This is the normal
situation in the northwest Pacific, which is a famous typhoon-prone area. It can be seen from the evolution that the cyclone
orbit around the subtropical high clockwise and is weakened during the orbiting. At the same time, the subtropical high
is jostled by the cyclone and distorted. In Fig. 15 the tracks of Hurricane Ioke (2006) and Typhoon Tip (1979) are depicted.
(The images are downloaded from the web [51] and [52] respectively.) The anticlockwise tracks are similar to the path of
the cyclonic vortex shown in Fig. 14.

6. Summary and discussions

In summary, some multiple vortex interaction models (5)–(6) with and without VVI are established for an inviscid
nondissipative and equivalent barotropic vorticity system in a beta-plane channel. It is found that the models with SVI
but without VVI possess more abundant symmetries and CLs than those with both VVI and SVI. It is demonstrated that the
SVI preserves the self-energy of every vortex and the interaction energy of every two vortices while destroys the enstrophy
CLs for every vortex. However, the VVI destroys both the energy CLs and the enstrophy CLs for every single vortex.

Some nontrivial exact vortices and vortex source solutions are obtained for both the β = 0 and β ≠ 0 cases. In detail,
some multiple point vortex source solutions, multiple vortex dipole sources, multiple vortex multi-pole source solutions,
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(a) t = 0. (b) t = 50.

(c) t = 100. (d) t = 200.

Fig. 13. Evolution of two nonequal vortices (38) and (39) with x10 = 25, x20 = 35, y10 = y20 = 30, A1 = 1, A2 = 1/2, rm1 = 1, rm2 = 2. The coefficient
C in the BIVM (35) is set to 1. The larger vortex is absorbed by the smaller one.

multiple fractal cyclons, multiple fractal cyclon dipoles and Bessel vortices are obtained. To our knowledge the multi-pole
source solutions, fractal cyclon source solutions, fractal cyclon dipole sources and arbitrary order BV have not yet been found
before. Since there exist various vortices in real nature, it is hoped that all the vortex solutions presented above might be
observed from the real natural phenomena, or from fluid experiments and other physical fields. Here, a special 2nd BV
observation of a circulation pattern occurred over the North Pacific on 26 March 2009 is offered.

By using the numerical approach, the characteristic features of vortex interactions are discussed under theMVIMwithout
the β-effect. For two equal vortices, we find out that there exists a separation distance which is a threshold for the
interaction behaviors. Two vortices tend to combine andmergewhen the distance between their centers is smaller than their
separation distance, or else they separate from each other. During themerging or separation, the two vorticesmutually orbit
around each other. These interaction behaviors are well consistent with a lot of known observations for cyclonic vortices
in meteorology. We also investigate interactions between nonequal vortices and identify two kinds of intensity dominated
absorption, where the vortex with smaller intensity is absorbed into the one with larger intensity. Next we explore the
interactions between a cyclonic vortex and a subtropical high in the northern hemisphere. The numerical results show that
the cyclonic vortex tends to orbit the subtropical high clockwise, while the subtropical high is jostled by the cyclone and
distorted. Those characteristic features of vortex interactions are compared with some known results of fluid mechanical
experiments and meteorologic observations.

Though the multiple vortex interaction models with both the SVI and VVI are established, and some special exact vortex
and vortex source solutions are obtained, many important problems are still open. For instance, are there any useful Lax
pairs for the MVIM? How to find exact vortex source solutions of the model for β ≠ 0? How to explore exact multiple
analytical non-source solutions for β = 0? How to discover any other types of multiple vortex solutions responsible for the
hurricanes or other disastrous weather? How to modify the MVIM (5)–(6) further to study other possible structures and
interactions of the multiple vortices?
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(a) t = 0. (b) t = 500.

(c) t = 700. (d) t = 1000.

Fig. 14. Evolution of two nonequal vortices (38) and (39) with x10 = 40, x20 = 55, y10 = 40, y20 = 25, A1 = −1, A2 = 1, rm1 = 3, rm2 = 1. The
coefficient C in the BIVM (35) is set to 1. The larger anti-vortex denotes a subtropical high, while the smaller vortex denotes a cyclonic vortex.

Fig. 15. The tracks of Hurricane Ioke (a) and Typhoon Tip (b).
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