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Abstract: Surface albedo in the Arctic is one of the most important factors influencing the polar heat budget. The impact of varia—
tions of the Arctic sea ice albedo on the heat budget of the earth-atmosphere system and on global climate change is significant. I
n this paper the surface albedo in the Arctic was derived using the Level 4B ( L1B) data from the advanced very high resolution
radiometer ( AVHRR) onboard the National Oceanic and Atmospheric Administration ( NOAA) polar-erbiting satellites. We applied
narrow-to-broadband conversion anisotropic correction atmospheric correction and cloud detection to the satellite data and o
btained broadband surface albedo products in clear conditions with a 4 km spatial resolution. Comparisons between the AVHRR al-
bedo products and in situ measurements collected during the Surface Heat Budget of the Arctic Ocean ( SHEBA) project showed a
bias of —0.07 and a standard deviation of 0. 05 during the spring-winter season. Monthly averaged NOAA/AVHRR surface albedo
data from 2008 to 2010 combined with in situ measurements from the fourth Chinese Arctic research expedition were used to study
the variation of the Arctic sea ice albedo. The influence of snowfall and ice ridges on the variation of surface albedo was a nalyzed.

The albedo decreased significantly and rapidly by about 0.3 when the snow was melting. Comparing between the albedo variations in
the rough multi-year ice area and smooth first-year ice area shows an albedo difference of 0.2 during the melting s eason. The re—
sults indicate that the melting of snow and ice was the dominant factor for the variation of the Arctic albedo.
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1 INTRODUCTION

Surface albedo is one of the most important factors influen—
cing the radiation budget of the earth-atmosphere system ( Curry
1996; Stamnes 1999)

the a lbedo takes on an added significance with model results in—

et al. et al. but for Arctic sea ice

dicating that a 0. 15—0. 20 decrease in the summer albedo would
lead to a complete disappearance of perennial sea ice ( Maykut &
1971) . The sea ice-albedo positive feedback
( Budyko 1969; Sellers 1969; Schlesinger & Jiang 1988) ex—

emplifies the strong connection between sea ice cover and cli-

U ntersteiner

mate. As t emperatures increase the extent of snow and ice is
reduced d ecreasing the surface albedo and increasing the a—
mount of sunlight that is absorbed by the earth-atmosphere system
(Curry et al. 1995) . The effect leads to further melting of sea
ice. The arctic sea ice-albedo positive feedback amplifies global
warming; therefore it is important to monitor the variation of po—
lar sea ice albedo.

Albedo is defined as the ratio of the upwelling solar irradi—
divided by the total

ance integrated over all solar wavelengths

downwelling irradiance also integrated over all solar wavelengths

( Valiente etal. 1995; Song & Gao 1999) . This definition is
d ifferent from reflectance. Reflectance is the fraction of incident
radiation reflected by the surface and is generally treated as a d
irectional property that is a function of the reflected direction

the incident direction and the incident wavelength. Hence al-
bedo is the integral of the reflectance in all directions. It is the
most important surface parameter retrieved by remote sensing data
and a physical parameter used to describe the property of surface
reflectance of solar radiation ( Wang & Gao 2004) . There are
two methods to obtain the albedo data; one is from in situ meas—
urements and the other is from satellite observations. Visible and
infrared sensors are used for observations of snow and ice albedo.
Albedo measurements over snow and ice are retrieved based on
the radiative transfer model. Satellite data can be an i mportant
tool for obtaining the albedo since these measurements provide
extensive spatial and temporal coverage. However the data is
limited by the narrow spectral range of the radiometer and the
limited viewing angle. Thus it is necessary to convert the nar—
rowband albedo to broadband albedo ( Jiang 2006; Brandt et
al. 2005; De Abreu et al. 1994; Valiente 1995;

Song & Gao 1999; Xiong et al. 2002) .

et al.
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2 DATA 222 SHEBA data

2.1 Satellite data

The NOAA/AVHRR Global Area Coverage ( GAC) data
with a spatial resolution of 4. 4 km were downloaded from the
Comprehensive Large Array-data Stewardship System ( CLASS) .
There are typically 14 satellite passes each day. The specifications
of AVHRR are shown in Table 1. CLASS is an electronic library
of NOAA environmental satellite data. The datasets are available
from 2008 — 01 — 09 http: //www. nsof. class. noaa. gov/saa/

products/welcome.

Table 1 Specifications of AVHRR

Parameters 1 2 3A 3B 4 5
Spectral 0.58— 0.725— 1.58— 3.55— 10.3— 11.5—
range / m 0.68 1.000 1.64 3.93 11.3 12.5
S/N(0.5% . o o o
albedo) =91 =91 =20:1
NEAT
(300 K) <0.12K =<0.12K =<0.12K
Temperature o o o 108— 180— 180—
range/K 335 335 335

The Special Sensor Microwave Imager ( SSM/I) global ice
concentration and snow extent product are the auxiliary data for
the AVHRR albedo retrieval. The data were delivered by the N
ational Snow and Ice Data Center ( NSIDC) with a spatial resolu—
tion of 25 km ( Nolin et al. 1998) . The dataset is available
from 2008 —01 —09 http: //nsidec. org/data/docs/daac /nisel
_nise. gd. html#format.

The Advanced Microwave Scanning Radiometerarth O
bserving System ( AMSR-E) snow depth products were delivered
by NSIDC with a spatial resolution of 12. 5 km ( Cavalieri et
al.  2004) . This dataset is available fromi 2008 —01 =09 ht-
tp: //nsidc. org/data/ae_sil2. html.

2.2 In situ observations

221 In situ data from the fourth Chinese arctic research expe—
dition

The in situ data were obtained during the forth Chinese Arc—
tic research expedition in 2010. The 82-day expedition was car—
ried out by M/V Xue Long. The voyage covered 12600 nautical
miles and reached 88° 26" N ( Yu 2011). During the e
xperiment albedo measurements were made using a Kipp &
Zonen CMAG6 albedometer at short—and long-term stations for a
bout 22 days from July 27" to August 24"™ 2010.

The albedo measurements at the short-term stations were
made mainly for snow melt and melt ponds. For the measure—
ments of sea ice albedo a smooth surface with no melt ponds or
ridges was chosen. For melt ponds the CMA6 albedometer was
deployed in the middle of the melt pond farthest from the edge
of the ponds.

At the long-term stations measurements of snow depth and
albedo were carried out. The albedo measurements were made

every 20 m along 200 x 125 m cross lines every four days.

The Canadian Coast Guard icebreaker Des Groseilliers b
egan a yearHong drift of the ice station Surface Heat Budget of
the Arctic Ocean ( SHEBA) . The SHEBA ice floe drifted more
than 1400 km in the Beaufort and Chukchi Seas with latitude
varying from 74°N to 81°N ( Perovich et al. 1999a; Pers—
son etal. 2002). The albedo measurements were monitored
using a Kipp & Zonen albedometer at a wide variety of sites se—
lected to include all available multi-year ice types and ¢
onditions. Albedo measurements were made every 2. 5 m a
long a 200 meter long albedo line from October 1997 to O
ctober 1998 with an accuracy of +0.01 ( Perovich et al.
1999a; Perovich et al. 1999b; Perovich et al. 2002).
The dataset is available from: 2010 - 09 - 10 fip: //ftpl.

esrl. noaa. gov/users/opersson/sheba/.
2.3 Study area

A 200 x 200 km area centered at the location ( 75°N 1
47°W; point A in Fig. 1) was selected to study the variation of
albedo with snowfall. The NSIDC AMSR-E snow depth products
were used.
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Fig. 1 Monthly averaged snow depth for March 2008
( “A” indicates the study area)

Two 200 x 200 km areas were selected in the Beaufort Sea
(75°N 128°W) and Chukchi Sea (72°N 166°W) to study the
influence of ice ridges on albedo variation. Most of the Beaufort
Sea was covered by multiyear sea ice with accumulated ice
ridge. The surface was relatively rough and the snow was deep.
The near-shore ice on the Chukchi Sea was smooth first-year sea
2006) . The loca—

tion of the study areas are shown in Fig. 2 where “A” indicates

ice but with small ice ridges ( Sturm et al.
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the area selected in the Beaufort Sea and “B” is the area in the
Chukchi Sea. The white areas in Fig. 2 indicate cloudy pixels or

no valid satellite albedo data.

; W Albedo
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Fig.2  Monthly averaged albedo for March 2008 in the Arctic
( A—Beaufort Sea region; B—Chukchi Sea region)

3 DATA PROCESSING

A linear relationship between the narrowband surface albedo
and the Top of the Atmosphere ( TOA) reflectance was d erived
for AVHRR channels 1 and 2 by Koepke ( 1989) .

efficients were used for different aerosol optical depths

Different co—
0 zone
and water vapor amounts and solar zenith angles. Koepke’s
method had been applied to derive the surface albedo from
AVHRR data ( De Abreu 1994; Knap & Oerlemans

1996; Knap et al. 1999; Stroeve et al. 1997; Li & Leigh—
ton 1992; Lindsay & Rothrock 1994). In this study solar

zenith angle correction narrow-to-broadband conversion aniso—

et al.

tropic correction  atmospheric correction ( Fowler et al.
2000) and cloud detection ( Key 1999) were applied for the
albedo retrievals.
The TOA reflectance was derived from the AVHRR visible
and near-infrared channels ( 0. 58—0. 68 pm and 0. 725—1
.000 wm) by solar zenith angle correction.
R, . = r/cos(6) (1)
R, ., = r,/cos(6) (2)

where R R, ... are TOA reflectance channels 1 and 2 r, and

1 toa
r, are the percent reflectance for channels 1 and 2 and 6 is the
solar zenith angle.

The broadband reflectance was derived from the TOA r
eflectance by narrowband to broadband conversion.

R, =a+b*R ) on (3)
is the broadband TOA reflectance and @ b and ¢ are

toa 1 toa tc* R

where R,
the regression coefficients. The radiative transfer model Streamer
was used to simulate the TOA reflectance regression relationship

over a broad range of viewing and illumination angles atmos—

pheric conditions and surface types and albedos ( Key &
Schweiger 1998) . When the surface is covered by sea ice the r
eflectance is
R, =0.022 +0.277R, , +0.507R, . (4)
Next the anisotropic correction was applied.
Aw = R (5)
is the TOA albedo and f is the anisotropic reflectance

1 toa

where A

factor.

toa

The clear condition surface broadband albedo was estimated
with Eq. (6) :
Avitce = (Aye —m) /n (6)

is the surface broadband albedo. m and n depend on

where A, e
the water vapor aerosol amounts and solar zenith angle.

The cloud detection was applied based on the algorithm of
the Cloud and Surface Parameter Retrieval System ( CASPR)
(Key 1999). CASPR includes five cloud tests: (1) The split—
w indow cirrus test ( 11—12 pm) was applied to ice ocean
and land cover. (2) The warm cloud test ( 11=—12 pum) was ap-
plied to all surface types. (3) The water cloud test (3.7 pm) was
used to identify liquid water clouds over ocean and land. (4) The
cold cloud test (11 wm) was designed to detect very cold clouds o-
ver all the surface types. (5) The clear test was applied only to
those pixels labeled cloudy by the cloud test for ice and snow sur—

faces. The result after the cloud detection is shown in Fig. 3.
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Fig.3  Surface albedo on March 14" 2008

Due to cloud influence there were no match-ups between the
in situ measurements from the forth Chinese Arctic research expe—
dition and the AVHRR albedo data. The historical data from
SHEBA were used for the validation of the AVHRR albedo. A
ccording to the records of the SHEBA field experiments during
April and May when the surface consisted of dry snow the sur—
face albedo was 0.84. The melt season lasted a total of 80 days
from late May to mid-August. The surface albedo reached a mini—
mum value on August 12", Snow began to accumulate on the ice
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in late August and by mid-September the snow cover was roughly
10 ¢m deep ( Curry et al.  2001) . Match-ups were generated
between the SHEBA and AVHRR albedo data during the frozen
season and melt season with a spatial window of 4 km and tempo—
ral window of 2 h. The number of match-ups was 28; 22 match—
ups in the frozen season and six in the melt season. The SHEBA
and AVHRR matich-up data plotted in Fig. 4 shows a bias of -0.

07 and standard deviation of 0. 05 in the frozen season. For the
melt season the differences of the six match-ups were between
—-0.23 and -0.08 and the bias was —0.17. The small differ—
ence in the frozen season was due to the uniform s urface type
while the large difference in the melt season was due to the com—
plicated surface type which was probably covered by several sur—
face types such as melt snow and melt pond over the 4 km satel—
lite window. This resulted in inconsistency in the surface types
between the SHEBA field measurements and AVHRR observa—
tions. This spatial difference was the main reason for the big

difference between the six match-ups in the melt season.
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Fig.4  Albedo validation

4 ANALYSIS OF ALBEDO VARIATION

The satellite data from 2008 to 2010 were processed by the

1.0 1.0

and monthly averaged AVHRR
surface albedo data were obtained. This albedo data combined

methods described in Section 3

with CMA6 measurements from the forth Chinese Arctic research
expedition were used to analyze the variation of the albedo in
the Arctic area. There were five phases in the evolution of the al-
bedo during the transition season ( between May and A ugust)

( Curry & Schramm 1995; Laine 2004; Perovich et al.

2002; Xiong et al. 2002). (1) Dry snow: in April and May
the surface albedo was high (0. 8—0.9) and the surface types
were complicated. (2) Melt snow: by the end of May most of the
snowfall had ceased and the albedo decreased to the “aging
snow” value. In the beginning of June the snow began to melt
and the albedo decreased to the “melt snow” value. (3) Pond
formation: in mid-July the snow melted and within one week the
albedo decreased sharply because of pond formation. (4) Pond e
volution: after phase (3) the snow continued to melt. All the
snow had melted except over the thickest ice leaving bare ice.
The albedo reached its minimum when the melt pond area was at
a maximum. (5) Autumn freeze up: in August the melt ponds
had refrozen and the albedo increased to the “bare ice” value.
In September the leads began to freeze and the snow began to a
ccumulate; the albedo returned to the “new snow” value. The
CMAG6 data showed the variation of the albedo for different s
urface types. The dry snow albedo was high (0.8—0.9) the
and the melt pond albedo

the albedo decreased as the snow

melt snow albedo decreased to 0. 6
was a bout 0. 1—0. 2. Thus
and ice melted—a trend which is consistent with the results of
Lindsay and Rothrock ( 1994) .

To investigate the relationship between snowfall and ice r
idges and the albedo variation two regions were selected. The av-
eraged AVHRR albedo from 2008 to 2010 in area A ( Fig. 1) were
analyzed to investigate the relationship between snowfall and albe—
do variation. The result is shown in Fig. 5. During March and A-
pril when the snow and ice were frozen the albedo was 0 .7—0.
8. By the end of May the snow began to melt and the a lbedo de—
creased to 0.66—0.75. The albedo continued to decrease to 0. 45
as the snow and ice melted and reached its m inimum value in Au-
gust when the melt pond area reached its maximum. The ponds
began to freeze in September and the albedo increased slowly. The
rapid drop ( by 0.3) in the albedo as the snow was melting is evi—
dent in all three datasets ( 2008—2010) .

To investigate the ice ridge influence on albedo variation the
monthly-averaged AVHRR albedo from March to September 2009
in areas A and B ( Fig.2) was analyzed. The result is shown in
Fig. 6. In March and April when the surface was covered by snow
and ice the albedo in the two regions was 0.75. By the end of
May as the snow began to melt the albedo at the Beaufort

1.0
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~ - L3 pull )
= 06 g 0.6 £ 06
2 - 2 = 2 .
= 04 = 04 Z 04
- . - x
0.2 g & 02 " - 02 =
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Fig.5 Albedo variation in snowfall area from 2008 to 2010
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Fig.6  Albedo variations in Beaufort sea region and

Chukchi sea region in 2009

sea region decreased to 0. 68 while in the Chukchi sea region it
decreased to 0.56. In June when the snow melted the albedo
in the Beaufort sea and Chukchi sea regions decreased to 0. 47
and 0.37 respectively. In July as the snow and ice melted the
albedo in the Beaufort and Chukchi seas continued to decrease

reaching 0.28 and 0. 13 respectively. The albedo reached its m
inimum when the melt pond area was at a maximum in August.
The a lbedo increased when the melt ponds began to freeze in late
September then slowly decreased by 0.2 during the melting of

the snow and ice.

S CONCLUSION

In this paper the broadband surface albedo products in
clear conditions with a spatial resolution of 4 km were derived u-
sing NOAA/AVHRR GAC L1B data by narrow-to-broadband
conversion anisotropic correction atmospheric correction and
cloud detection. The comparisons between the AVHRR albedo
products and the SHEBA data show a bias of — 0. 07 and a
standard deviation of 0. 05 during the frozen season. The month—
ly-averaged NOAA/AVHRR surface albedo data from 2008 to
2010 combined with in situ observations from the forth Chinese
Arctic research expedition were used to study the variation of
the Arctic sea ice albedo. The influence of snowfall and ice rid-
ges on the variation of the surface albedo was analyzed. The al-
bedo decreased significantly and rapidly by about 0.3 when the
snow was melting. Comparing the albedo variations between the
rough multi-year ice area and smooth first-year ice area shows an
albedo difference of 0.2 between the two regions during the melt—
ing season. Our results indicate that the melting of snow and ice

is the dominant factor for the variation of albedo in the A rctic.
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