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This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)-

dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra,

symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from

the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the

properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric

circulation are given.
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1. Introduction

Many methods can be used to obtain explicit

solutions of nonlinear differential equations, such as

inverse scattering transformation, classical and non-

classical Lie group approaches, Darboux transforma-

tion, Bäcklund transformation, extended Jacobi el-

liptic function rational expansion method, etc.[1−14]

But among these methods, there is no single versa-

tile method which can be used to solve all the dif-

ferential equations. For lots of differential equations,

the classical Lie group or Lie symmetry method[1−4]

is a valid and direct way to obtain explicit solutions.

Since Sophus Lie[1] set up the theory of Lie group, it

has been developed and widely used to find Lie point

symmetry algebras and groups for kinds of differen-

tial systems. One can use the method to reduce the

original equation to another equation with less inde-

pendent variables. If the original differential equation

is ordinary, this technique can also be used to depress

its orders. Then theoretically all the corresponding

group-invariant solutions can be found by solving the

reduced system. However, sometimes one can easily

reduce the original equation but hardly obtain explicit

solutions of the reduced equation. Especially for the

(3+1)-dimensional nonlinear partial differential equa-

tion, the analytical solution is very difficult to obtain.

Recently more and more mathematicians and

physicists devote lots of effort to investigate the mod-

els of atmospheric and oceanic dynamics.[15−17] In

the atmospheric and oceanic dynamics, almost all the

problems are highly nonlinear. Their corresponding

models are always some nonlinear differential equa-

tions which are very difficult to solve explicitly. For

some meaningful and interesting equations in atmo-

spheric and oceanic dynamics, Lou and his copartners

have done a lot of work.[6,18−24] Therein, the (2+1)-

dimensional inviscid barotropic nondivergent vorticy

(IBNV) equation

q = ψxx + ψyy ≡ △̃ψ,

qt + [ψ, q] + βψx = 0, [ψ, q] = ψxqy − ψyqx

has been researched by Huang and Lou,[18] in which

some types of general explicit Rossby wave solutions

are obtained by using the group theory. Here we inves-

tigate the high-dimensional form of the IBNV equa-
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tion called (3+1)-dimensional baroclinic potential vor-

ticity (BPV) equation[25,26] in fluid dynamics,

q = ψxx + ψyy + ψzz ≡ △ψ,

qt + [ψ, q] + βψx = 0, [ψ, q] = ψxqy − ψyqx.

In Ref. [26], Zhang et al. gave out the approximate

solutions of BPV equation. By means of the re-

ductive perturbation method, three types of general-

ized (2+1)-dimensional Kadomtsev–Petviashvili (KP)

equations are also derived from the (3+1)-dimensional

BPV equation.[26] In this paper, we will investigate the

BPV equation in an alternative way.

First, we analyse its symmetry including the

symmetry algebra, symmetry group and the group-

invariant solution. Furthermore, in order to obtain

more explicit solutions of BPV equation, we uti-

lize some skills on the solutions of (2+1)-dimensional

IBNV equation.[18] Thanks to these results, some spe-

cial explicit interesting solutions are obtained.

The paper is organized as follows. In Section 2,

the classical Lie group theory is applied to the (3+1)-

dimensional BPV equation. Its Lie point symmetries,

the corresponding Lie algebra and Lie group are ob-

tained. One type of group-invariant solution is given

out as a case. In Section 3, we obtain some exact ex-

plicit solutions of BPV equation based on the results

obtained by Huang and Lou. The conclusion will be

given in the last section.

2. Symmetry analysis of (3+1)-

dimensional BPV equation

The (3+1)-dimensional BPV equation may be

written as

q = ψxx + ψyy + ψzz ≡ △ψ, (1)

qt + [ψ, q] + βψx = 0, [ψ, q] = ψxqy − ψyqx, (2)

where ψ (≡ ψ(x, y, z, t)) is the dimensionless stream

function, q (≡ q(x, y, z, t)) is the vorticity, β =

β0(L
2/U) and β0 = (ω0/R0) cosϕ0, in which R0 is

the earth’s radius, ω0 is the angular frequency of the

earth’s rotation and ϕ0 is the latitude, L and U are

the characteristic horizontal length and velocity scales

respectively. The subscripts x, y, z, t represent partial

derivatives.

First, we can obtain the Lie point symmetries of

the BPV equation by using the classical Lie group

method. Applying the classical method to Eqs. (1)

and (2), we consider the one-parameter group of in-

finitesimal transformations in (x, y, z, t, ϕ, q) given by

x∗ = x+ ϵX(x, y, z, t, ψ, q) + o(ϵ2),

y∗ = y + ϵY (x, y, z, t, ψ, q) + o(ϵ2),

z∗ = z + ϵZ(x, y, z, t, ψ, q) + o(ϵ2),

t∗ = t+ ϵT (x, y, z, t, ψ, q) + o(ϵ2),

ψ∗ = ψ + ϵΨ(x, y, z, t, ψ, q) + o(ϵ2),

q∗ = q + ϵQ(x, y, z, t, ψ, q) + o(ϵ2),

(3)

where ϵ is group parameter. It is required that equations (1) and (2) are invariant under transformations (3),

and this yields a system of overdetermined, linear equations for the infinitesimals X, Y , Z, T , Ψ and Q. Solving

these equations, one can have
X = k1x+ g3(t), Y = k1y + g4(t), Z = k1z + k2, T = −k1t+ k3,

Ψ = 3k1ψ + g4t(t)x− g3t(t)y + g1(t)z − 1
2βg4(t)z

2 + g2(t) + f(z),

Q = k1q − βg4(t) + fzz(z),

(4)

where k1, k2, k3 are arbitrary constants, f(z) is the arbitrary function of z, g1(t), g2(t), g3(t) and g4(t) are four

arbitrary functions of t and subscripts z, t represent derivatives with respect to z, t. Then the corresponding

symmetry of ψ and q can be written as

σψ = (k1x+ g3(t))ψx + (k1y + g4(t))ψy + (k1z + k2)ψz + (−k1t+ k3)ψt − (3k1ψ

+ g4t(t)x− g3t(t)y + g1(t)z −
1

2
βg4(t)z

2 + g2(t) + f(z)),

σq = (k1x+ g3(t))qx + (k1y + g4(t))qy + (k1z + k2)qz + (−k1t+ k3)qt − (k1q − βg4(t) + fzz(z)).

Hence, the corresponding vector field is

V = (k1x+ g3(t))
∂

∂x
+ (k1y + g4(t))

∂

∂y
+ (k1z + k2)

∂

∂z
+ (−k1t+ k3)

∂

∂t
+
(
3k1ψ + g4t(t)x

− g3t(t)y + g1(t)z −
1

2
βg4(t)z

2 + g2(t) + f(z)
) ∂

∂ψ
+ (k1q − βg4(t) + fzz(z))

∂

∂q
.
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Therefore we can say that the symmetry algebra of Eqs. (1) and (2) is generated by the following vector fields

v1 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− t

∂

∂t
+ q

∂

∂q
+ 3ψ

∂

∂ψ
,

v2 =
∂

∂z
, v3 =

∂

∂t
,

vf4 = f(z)
∂

∂ψ
+ fzz(z)

∂

∂q
, vg35 = g3(t)

∂

∂x
+ g3t(t)y

∂

∂ψ
,

vg46 = g4(t)

(
∂

∂y
− β

∂

∂q
− 1

2
βz2

∂

∂ψ

)
+ g4t(t)x

∂

∂ψ
,

vg17 = g1(t)z
∂

∂ψ
, vg28 = g2(t)

∂

∂ψ
.

(5)

The commutation relations among these vector fields are given by Table 1, the entry in row i and the

column j represents [vi, vj ] = vivj − vjvi.

Table 1. The commutation relations [vi, vj ].

v1 v2 v3 vf4 vg35 vg46 vg17 vg28

v1 0 −v2 v3 vzfz−3f
4 v−g3−tg3t

5 vg4+tg4t
6 v−2g1−tg1t

7 v−3g2−tg2t
8

v2 v2 0 0 vft4 0 v−βg4t vg18 0

v3 −v3 0 0 0 vg3t5 vg4t6 vg1t7 vg2t8

vf4 v−zfz+3f
4 v−ft

4 0 0 0 0 0 0

vg35 vg3+tg3t
5 0 v−g3t

5 0 0 vg3tg4+g3g4t
8 0 0

vg46 v−g4−tg4t
6 vβg4t v−g4t

6 0 v−g3tg4−g3g4t
8 0 0 0

vg17 v2g1+tg1t
7 v−g1

8 v−g1t
7 0 0 0 0 0

vg28 v3g2+tg2t
8 0 v−g2t

8 0 0 0 0 0

Since each group Gi is a symmetry group, the above transformations imply that if ψ = ϕ(x, y, z, t), q =

p(x, y, z, t) are solutions of BPV equation, so there are

G̃1 : ψ(1) = exp(3ϵ)ϕ(x exp(−ϵ), y exp(−ϵ), z exp(−ϵ), t exp(ϵ)),
q(1) = exp(ϵ)p(x exp(−ϵ), y exp(−ϵ), z exp(−ϵ), t exp(ϵ));

G̃2 : ψ(2) = ϕ(x, y, z − ϵ, t), q(2) = p(x, y, z − ϵ, t);

G̃3 : ψ(3) = ϕ(x, y, z, t− ϵ), q(3) = p(x, y, z, t− ϵ);

G̃4 : ψ(4) = ϕ(x, y, z, t) + f(z)ϵ, q(4) = p(x, y, z, t) + fzz(z)ϵ;

G̃5 : ψ(5) = ϕ(x− g3(t)ϵ, y, z, t)− g3t(t)yϵ, q(5) = p(x− g3(t)ϵ, y, z, t);

G̃6 : ψ(6) = ϕ(x, y − g4(t)ϵ, z, t) +
(
g4t(t)x− 1

2
βz2g4(t)

)
ϵ,

q(6) = p(x, y − g4(t)ϵ, z, t)− βg4(t)ϵ;

G̃7 : ψ(7) = ϕ(x, y, z, t) + g1(t)zϵ, q(7) = p(x, y, z, t);

G̃8 : ψ(8) = ϕ(x, y, z, t) + g2(t)ϵ, q(8) = p(x, y, z, t).

The general one-parameter group of symmetries is obtained by considering linear combination c1v1 + c2v2 +

c3v3+c4v
f
4 +c5v

g3
5 +c6v

g4
6 +c7v

g1
7 +c8v

g2
8 of the given vector fields; the explicit formulae for the transformations

are very complicated. Factually, it can be represented uniquely as follows:

g = exp(c1v1) · exp(c2v2) · exp(c3v3) · exp(c4vf4 ) · exp(c5v
g3
5 ) · exp(c6vg46 ) · exp(c7vg17 ) · exp(c8vg28 ).

Thus the most general solutions ψ̃ and q̃ obtained from the given solutions ψ = ϕ(x, y, z, t) and q = p(x, y, z, t)

are
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ψ̃ = ϕ(X,Y, Z, T ) +
c6g4t(ct− c3)x

c2
− c5g3t(ct− c3)y

c2
− c6βg4(ct− c3)z

2

2c2
+
c7g1(ct− c3) + c2c6βg4(ct− c3)

c
z

+ f
(z
c
− c2

)
c4 − c2c7g1(ct− c3) + c8g2(ct− c3)−

c5c6g3(ct− c3)g4t(ct− c3)

c
− c22c6βg4(ct− c3)

2
,

q̃ = p(X,Y, Z, T ) + c4fzz

(z
c
− c2

)
− c6β,

and

X =
x

c
− c5g3(ct− c3), Y =

y

c
− c4g4(ct− c3), Z =

z

c
− c2, T = ct− c3,

where c ≡ exp(c1), c1, c2, . . . , c8 are arbitrary constants, f is the function of z/c − c2 and gi is the function of

ct− c3 (i = 1, · · · , 4).

The methods used to find group-invariant solu-

tions, generalizing the well-known techniques for find-

ing similarity solutions, provide a systematic compu-

tational method for determining large classes of spe-

cial solutions. These group-invariant solutions are

characterized by their invariance under some symme-

try group of the system of partial differential equa-

tions. Given an s-parameter (s < p) subgroup of

the partial differential equations with p-independent

variables, one can reduce the original equations to

(p − s)-dimensional equations.[3] By solving the re-

duced equations with fewer independent variables, one

can obtain group-invariant solutions of the original

equations. Similarly, using this method we can reduce

the (3+1)-dimensional BPV equation to some lower-

dimensional equations, which can be easily realized.

For example, we look at a two-dimensional reduction

for the BPV equation under v2 and v5 in Eq. (5).

For solutions invariant under the translated group

generated by v2 = ∂/∂z, equations (1) and (2) are

reduced to their two-dimensional counterparts, which

have the same form, but (ψ, q) depend only on (x, y, t).

Obviously, the (2+1)-dimensional reduced equations

is still too difficult to be solved explicitly, so we look

at solutions invariant under a second one-dimensional

group v5. For the v5 = α∂/∂x+αty ∂/∂ψ (α ≡ g3(t) ̸=
0), invariants are given by

y, t, ψ̃(y, t) = ψ − αtxy

α
, q = q(y, t)

with y, t being independent variables. The reduced

system of equations

q = ψ̃yy, (6)

qt +
αty

α
qy +

αtyβ

α
= 0 (7)

is readily solved. Then the group-invariant solution of

BPV equation can be obtained as

ψ = −βy
3

6
+ f1(t)y + f2(t) +

xyαt
α

+

∫∫
F1

(
y

α

)
dydy,

q = −yβ + F1

(
y

α

)
,

where f1(t) and f2(t) are arbitrary functions of t and

F1(y/α) is the arbitrary function of y/α.

In a similar way, one can obtain other three-

dimensional or two-dimensional even ordinary differ-

ential reduced systems of the BPV equation. How-

ever, not all the reduced equations can be solved eas-

ily. For the other reduced equations of BPV equation,

it is harder to obtain their explicit solutions. Hence

it is necessary to looking for different ways to obtain

more explicit solutions. In the next section, we will

make use of some skills to find some special types

of explicit solutions of the (3+1)-dimensional BPV

equation from the obtained solutions of its (2+1)-

dimensional counterpart.

3. Some explicit solutions from

(2+1)-dimensional IBNV

equation

When our stream function ψ and vorticity q are

independent of z, (3+1)-dimensional BPV equations

(1) and (2) becomes the following (2+1)-dimensional

equations:

q = ψxx + ψyy ≡ △̃ψ, (8)

qt + [ψ, q] + βψx = 0, [ψ, q] = ψxqy − ψyqx. (9)

Equations (8) and (9) can be combined as one equa-

tion for substituting Eq. (8) into Eqs. (9) to drop out

q,
∂

∂t
△̃ψ + [ψ, △̃ψ] + β

∂ψ

∂x
= 0, (10)
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which is called IBNV equation in a beta-plane.[18,27]

Huang and Lou[18] have investigated this (2+1)-

dimensional IBNV equation by the classical Lie group

approach. They gave out its four types of exact ex-

plicit similarity solutions by solving the reduced ordi-

nary differential equations. One special type of solu-

tion is related to a single periodic Rossby wave. The

other three exact solutions including the third-order

polynomial solution and an asymptotically periodic

Rossby wave solution described by the first types of

the Bessel functions show that the stream function

may have not only linear shears but also nonlinear

shears. Here we utilize two of the four types of so-

lutions to obtain some special explicit solutions of

(3+1)-dimensional BPV equation.

3.1. Solutions from third-order polyno-

mial solution

In Ref. [18], an exact third-order polynomial so-

lution of (2+1)-dimensional IBNV equation (10) was

obtained,

ψ = c1x
3+ c2y

3−
(
3c2+

β

2

)
x2y−3c1xy

2+C1(t)x
2+C2(t)xy− (C1(t)+ c0)y

2+C3(t)x+C4(t)y+C0(t), (11)

where c0, c1 and c2 are arbitrary constants and Ci(t), i = 0, 1, . . . , 4 are arbitrary functions of t.

Now we assume that the stream function ψ of (3+1)-dimensional BPV equation has the similar form to

Eq. (11) with some modifications, i.e.

ψ = c1(z)x
3 + c2(z)y

3 −
(
3c2(z) +

β

2

)
x2y − 3c1(z)xy

2 + C1(t, z)x
2

+ C2(t, z)xy − (C1(t, z) + c0)y
2 + C3(t, z)x+ C4(t, z)y + C0(t, z). (12)

Our aim is to choose the suitable functions of ci(z) (i = 0, 1, 2) and Ci(t, z) (i = 0, 1, . . . 4) so that ψ in Eq. (12)

is really the solution of (3+1)-dimensional BPV equation.

First, we write down the combination of Eqs. (1) and (2), i.e.

∂

∂t
△ ψ + [ψ,△ψ] + β

∂ψ

∂x
= 0, (13)

where △ψ = ψxx + ψyy + ψzz. Then substituting Eq. (12) into Eq. (13), collecting the coefficients of x and

y, making them zero, one can obtain some differential equations with respect to ci(z), i = 0, 1, 2 and Ci(t, z),

i = 0, 1, . . . , 4:

d2

dz2
c2(z) = 0,

d2

dz2
c1(z) = 0,

− c1(z)
d2

dz2
c2(z) + c2(z)

d2

dz2
c1(z) = 0,

∂3

∂z2∂t
C0(t, z)− C4(t, z)

∂2

∂z2
C3(t, z) + C3(t, z)

∂2

∂z2
C4(t, z) = 0,

∂3

∂z2∂t
C3(t, z) + C3(t, z)

∂2

∂z2
C2(t, z) + 2C1(t, z)

∂2

∂z2
C4(t, z) = 0,

2C4(t, z)
∂2

∂z2
C1(t, z) + C2(t, z)

∂2

∂z2
C3(t, z) = 0,

− 3C2(t, z)
d2

dz2
c1(z) + 6c2(z)

∂2

∂z2
C1(t, z)− 6C1(t, z)

d2

dz2
c2(z) + β

∂2

∂z2
C1(t, z) + 3c1(z)

∂2

∂z2
C2(t, z) = 0,

C2(t, z)
d2

dz2
c2(z) + 2c1(z)

∂2

∂z2
C1(t, z)− 2C1(t, z)

d2

dz2
c1(z) + 2c1(z)

d2

dz2
c0(z)

− 2c0(z)
d2

dz2
c1(z)− c2(z)

∂2

∂z2
C2(t, z) = 0,

2C1(t, z)
∂2

∂z2
C3(t, z)− C4(t, z)

∂2

∂z2
C2(t, z) +

∂3

∂z2∂t
C4(t, z) + C2(t, z)

∂2

∂z2
C4(t, z)

+ 2c0(z)
∂2

∂z2
C3(t, z)− 2C3(t, z)

d2

dz2
c0(z)− 2C3(t, z)

∂2

∂z2
C1(t, z) = 0,

c1(z)
d2

dz2
c0(z)− c0(z)

d2

dz2
c1(z)−

1

24
β
∂2

∂z2
C2(t, z) = 0,
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2C1(t, z)
∂2

∂z2
C2(t, z)− 2C2(t, z)

∂2

∂z2
C1(t, z) +

∂3

∂z2∂t
C1(t, z) + 3c2(z)

∂2

∂z2
C3(t, z)

+ 3c1(z)
∂2

∂z2
C4(t, z)− 3C4(t, z)

d2

dz2
c1(z)− 3C3(t, z)

d2

dz2
c2(z) +

1

2
β
∂2

∂z2
C3(t, z) = 0,

−6C1(t,z)
d2

dz2
c2(z)− 12c0(z)

d2

dz2
c2(z) + 12c2(z)

d2

dz2
c0(z)− 3C2(t, z)

d2

dz2
c1(z) + 2β

d2

dz2
c0(z)

+ 2β
∂2

∂z2
C1(t, z) + 6c2(z)

∂2

∂z2
C1(t, z) + 3c1(z)

∂2

∂z2
C2(t, z) = 0,

−6c2(z)
∂2

∂z2
C4(t, z) + 4c0(z)

∂2

∂z2
C1(t, z)− 6c1(z)

∂2

∂z2
C3(t, z) +

∂3

∂z2∂t
C2(t, z)− β

∂2

∂z2
C4(t, z)

− 6C3(t, z)
d2

dz2
c1(z) + 6C4(t, z)

d2

dz2
c2(z)− 4C1(t, z)

d2

dz2
c0(z) = 0,

−3c2(z)
∂2

∂z2
C3(t, z)− 2C2(t, z)

∂2

∂z2
C1(t, z)− 3c1(z)

∂2

∂z2
C4(t, z) + 2C1(t, z)

∂2

∂z2
C2(t, z)

+ 2c0(z)
∂2

∂z2
C2(t, z)−

∂3

∂z2∂t
C1(t, z) + 3C3(t, z)

d2

dz2
c2(z) + 3C4(t, z)

d2

dz2
c1(z)− 2C2(t, z)

d2

dz2
c0(z)=0.

By solving the above differential equations with the help of Maple, one can obtain some complicated results

satisfying our requirements. Here we only write down two special statements after disposal.

Result 1

c0(z) = k1 + k2z, c1(z) = k3 + k4z, c2(z) = k5 + k6z,

C0(t, z) = s1(t) + s2(t)z + p(z), C1(t, z) = s3(t) + s4(t)z,

C2(t, z) = s5(t) + s6(t)z, C3(t, z) = s7(t) + s8(t)z, C4(t, z) = s9(t) + s10(t)z.

Here ki (i = 1, . . . , 6) are arbitrary constants while sj(t) (j = 1, . . . , 10) and p(z) are arbitrary functions of t

and z, respectively.

Result 2

c0(z) = c0(z), c1(z) = 0, c2(z) = −β
6
,

C0(t, z) =

(
z2

d2

dz2
c0(z)− 4z

d

dz
c0(z) + 6c0(z)

)∫
t

(
d2

dt2
r1(t)

)2

dt

+ 2

(
d2

dz2
c0(z)z − 2

d

dz
c0(z)

)∫
t
d2

dt2
r1(t)

d2

dt2
r2(t)dt

+
d2

dz2
c0(z)

∫
t

(
d2

dt2
r2(t)

)2

dt− 4t

β

∫
d2

dz2
c0(z)

(
z
d

dz
F1(z) +

d3

dz3
f1(z)

)
dz

+

4

(
d

dt
r1(t)− a1

)
β

[
2
d2

dz2
c0(z)

d

dz
c0(z)− 3

∫ (
d2

dz2
c0(z)

)2

dz

]
+

2t

β
[zF1(z) + f1(z)]

d2

dz2
c0(z)

−
[
1

2
t2B(z, t)2 +

2

β
(zr4(t) + r3(t))

]
d2

dz2
c0(z) + 2

[
t2B(z, t) +

2

β
r4(t)

]
d

dz
c0(z)

+ (z2A1(t) + zA2(t))
d3

dz3
f1(z)

−
[
z2A1(t) + z(2A1(t) +A2(t))

]
d2

dz2
f1(z) + [3zA1(t) + 2A1(t) +A2(t)]

d

dz
f1(z)

− 4A1(t)f1(z) +
1

2
f2(z)− 3t2

(
d2

dt2
r1(t)

)2

c0(z) +
1

2
zr5(t) +

1

2
r6(t),

C1(t, z) = 0, C2(t, z) = −1

t
, C3(t, z) = − 4

βt

d2

dz2
c0(z) + zt

d3

dt3
r1(t) + t

d3

dt3
r2(t),

C4(t, z) = 2tB(z, t)
d2

dz2
c0(z)− 4t

d2

dt2
r1(t)

d

dz
c0(z)− ztF1(z)− t

d

dz
f1(z) + t

d

dt
r3(t) + zt

d

dt
r4(t).
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Here

Ai(t) =
1

2
t2

d2

dt2
ri(t)− t

d

dt
ri(t) + ri(t) (i = 1, 2),

F1(z) =
d3

dz3
f1(z)−

d2

dz2
f1(z), B(z, t) = z

d2

dt2
r1(t) +

d2

dt2
r2(t)

and rj(t) (j = 1, . . . , 6), c0(z), f1(z), f2(z) are arbitrary functions of the corresponding independent variables.

Hence the stream function ψ in Eq. (12) with parameters in Result 1 and Result 2 respectively is the explicit

solution of Eq. (13). Due to lots of arbitrary functions with respect to z and t in Result 1 and Result 2, the

solutions obtained are abundant.

3.2. Solutions from the periodic Rossby wave solution

In Ref. [18], one special type of solution of (2+1)-dimensional IBNV related to a single periodic Rossby

wave was also given out. It reads

ψ = f(t)y + C cos

(
kb0x+ ky + kb0

∫
f(t)dt+

βb0t

k(b20 + 1)
+ x0

)
+ ψ0(t), (14)

where C, k, b0, x0 are arbitrary constants and f(t), ψ0(t) are arbitrary functions of t.

In order to obtain the solutions of Eq. (13) from Eq. (14), one should do some modifications to the param-

eters in it. Hence we substitute

ψ = f(t, z)y + C(z) cos

(
k(z)b0(z)x+ k(z)y + k(z)b0(z)

∫
f(t, z)dt

+
βb0(z)t

k(z)(b0(z)2 + 1)
+ x0(z)

)
+ ψ0(t, z) (15)

into Eq. (13). Then we will obtain a very complicated equation. Firstly one can collect the coefficients with

respect to sin and cos, then collect the coefficients of x and y. To make the obtained coefficients being zero,

one can obtain the proper C(z), k(z), b0(z), x0(z) and f(t, z), ψ0(t, z) by solving these differential equations.

Because these differential equations are too long, we do not write them down here. We give out three types of

the special solutions of Eq. (13) directly.

Solution 1

ψ1 = f1(t)y + (a2z + a3) cos

(
a4a5x+ a4y + a4a5

∫
f1(t)dt+

βa5t

a4(a25 + 1)
+ a1

)
+ ψ01(t), (16)

where ai (i = 1, . . . , 5) are arbitrary constants, f1(t) and ψ01(t) are two arbitrary functions of t.

A simple solution describes a typical plane Rossby wave (Fig. 1(a)) with vertical structure of first baroclinic

mode, showing out-of-phase stream function pattern between upper and lower levels at z direction (Fig. 1(b)),

under parameters of ψ01(t) = 0, f1(t) = −1, β = 1, a1 = 0, a2 = 10, a3 = 0, a4 = π/2, a5 = 1.

Fig. 1. The ψ1 given by Eq. (16) with ψ01(t) = 0, f1(t) = −1, β = 1, a1 = 0, a2 = 10, a3 = 0, a4 = π/2,

a5 = 1 at (a) z = 1 and t = 0; (b) y = 1 and t = 0.
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Solution 2

ψ2 = f2(t)y +
√
z2 + 2b3z + b2 + b23 exp(b4) cos

(
b5b6x+ b5y + b5b6

∫
f2(t)dt+

βb6t

b5(b26 + 1)

+ arctan
z + b3√
b2

+ b1

)
+ ψ02(t), (17)

where bi (i = 1, . . . , 6) are arbitrary constants, f2(t) and ψ02(t) are two arbitrary functions of t.

Solution 2 in Eq. (17) is an extension of solution 1 in Eq. (16) which still depicts plane Rossby waves, but

possesses richer vertical structure patterns. For example, figure 2 is a plot of a special selection for ψ2 described

by Eq. (17) with

f2(t) = −0.5, ψ02(t) = 0, b1 = 0, b2 = 1, b3 = 2, b4 = 0.5, b5 = π/2, b6 = 1, β = 1. (18)

Solution 2 has similar plane Rossby waves pattern (omitted) as that in Fig. 1(a) of solution 1, while the

vertical structure could tilt westward (Fig. 2(a)) or southward (Fig. 2(b)) with respect to the increasing height.

Parameters b5 and b6 control the vertical structure of Rossby wave tilting westward (eastward) or southward

(northward) in Eq. (17). It is noticed that the upper and lower stream function (Fig. 2) appears to be asymmetry

circulation pattern, not always symmetric as that in Fig. 1(b), which is controlled by parameter b3.

Fig. 2. The ψ2 given by Eq. (17) with Eq. (18) at (a) y = 0 and t = 0; (b) x = 0 and t = 0.
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Fig. 3. Longitude-pressure cross section in winter (a) and summer (b) stationary wave distribution expressed

by the geopotential height anomaly (in dgpm) in harmonic wavenumber-2 around 50◦ N.

As we know, the stationary waves always appear to be wavenumber-2 structure in the Northern Hemisphere

because of the two-lands-two-oceans (the American and Euro–Asian continents, the North Pacific and the North

Atlantic) land sea distribution. Usually geopotential height at mid-high latitudes could be equivalent to the

geostrophic stream function because of the geostrophic balance relation. It is found that the climatological

wavenumber-2 planetary Rossby waves at 50◦ N show westward tilting vertical structure in winter (Fig. 3(a)),

while eastward tilt in summer (Fig. 3(b)). The intensity of wave amplitude also exhibits asymmetry in the

lower troposphere (1000–700 hPa) and upper troposphere (700–100 hPa). The real case is very similar to our

theoretical solution in Fig. 2(a).

Solution 3

ψ3 = f3(t)y + C(z) cos(k(z)y + x0(z))

+ ψ03(t), (19)

where f3(t), ψ03(t) and x0(z), k(z), C(z) are arbitrary

functions of t and z, respectively. Since ψ3 is inde-

pendent of x, this solution only reflects the merid-

ional cells on y–z cross sections at arbitrary time. The

traditional zonal mean meridional cells of atmosphere

are the well-known three meridional cells: Hadley cell,

Ferrel cell and polar cell in the Northern or Southern

Hemisphere. Solution 3 certainly can describe this

traditional three meridional cells as those in Fig. 4

with

f3(t) = 0 , ψ03(t) = 0 , x0(z) = π/2 ,

k(z) = π/1.1 , C(z) = sin(πz/4 + 0.67) .

Fig. 4. The ψ3 given by Eq. (19) with f3(t) = 0, ψ03(t) =

0, x0(z) = π/2, k(z) = π/1.1, C(z) = sin(πz/4 + 0.67) at

t = 0.
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Actually, ψ3 in Eq. (19) has very rich meridional circulation solutions since there are many arbitrary

functions. Figure 5 is a plot of four special different selections of the five arbitrary functions in Eq. (19) for ψ3.

There are

Fig. 5(a): f3(t) = cos(t) + 2, ψ03(t) = sin(t), C(z) = 10, k(z) = tanh(z), x0(z) = −z;
Fig. 5(b): f3(t) = cos(t) + 2, ψ03(t) = 0, C(z) = exp(z), k(z) = 1, x0(z) = 0;

Fig. 5(c): f3(t) = cos(t) + 2, ψ03(t) = 0, C(z) = 10z, k(z) = 1, x0(z) = z;

Fig. 5(d): f3(t) = cos(t) + 2, ψ03(t) = 0, C(z) = tan(z), k(z) = z, x0(z) = 0.

Whether the above four special solutions have physical meanings in atmosphere needs further study.

Fig. 5. (a)–(d) ψ3 given by Eq. (19) with four different selections all at t = 1.

4. Conclusion

We know that it is useful and meaningful to investigate the models of atmospheric and oceanic dynamics.

But due to their nonlinearity, it is hard to give out their explicit solutions. Especially for the (3+1)-dimensional

nonlinear partial differential equation, to gain the explicit solutions is more difficult to realize. In this paper,

the (3+1)-dimensional BPV equation in fluid dynamics is studied. First, making use of the classical Lie group

method, we analyse the symmetry of the BPV equation including its point Lie symmetries, Lie algebra and the

corresponding Lie group. A two-dimensional symmetry reduction is given out and the corresponding group-

invariant solution is obtained. Because of the high dimensions of the BPV equation, more group-invariant

solutions cannot be obtained easily. Hence looking for another way to obtain more explicit solutions is necessary.

The (2+1)-dimensional counterpart of (3+1)-dimensional BPV equation has been studied by Huang and Lou.[18]

By the Lie group theory, four types of explicit solutions were gained by them. Thanks to their results, some

special explicit solutions of (3+1)-dimensional BPV equation are luckily obtained by adding the independent

variable z to the arbitrary parameters in the solutions of (2+1)-dimensional IBNV equation. To show the

properties and characters of these solutions, some plots as well as their possible physical meanings of the

atmospheric circulation are given out lastly.
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