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The increasing rate of global mean sea-level rise

during 1993-2014
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Didier Monselesan?, Benoit Legresy? and Christopher Harig®

Global mean sea level (GMSL) has been rising at a faster rate
during the satellite altimetry period (1993-2014) than previous
decades, and is expected to accelerate further over the coming
century'. However, the accelerations observed over century and
longer periods? have not been clearly detected in altimeter data
spanning the past two decades®>. Here we show that the rise,
from the sum of all observed contributions to GMSL, increases
from 2.2 £ 0.3mmyr'in 1993 to 3.3 = 0.3mmyr~' in 2014.
This is in approximate agreement with observed increase in
GMSL rise, 2.4 = 0.2mmyr™" (1993) to 2.9 + 0.3mmyr™"
(2014), from satellite observations that have been adjusted for
small systematic drift, particularly affecting the first decade
of satellite observations®. The mass contributions to GMSL
increase from about 50% in 1993 to 70% in 2014 with the
largest, and statistically significant, increase coming from the
contribution from the Greenland ice sheet, which is less than
5% of the GMSL rate during 1993 but more than 25% during
2014. The suggested acceleration and improved closure of
the sea-level budget highlights the importance and urgency
of mitigating climate change and formulating coastal adaption
plans to mitigate the impacts of ongoing sea-level rise.

Projections of future sea levels must be based on a sound under-
standing of historical changes in GMSL and its underlying processes,
as well as recent changes in the rate of rise'. In a previous study,
the apparent decrease in the rate of GMSL rise from 3.2 mmyr™'
in the first decade of satellite altimetry to 2.8 mm yr™" in the second
was suggested to be primarily a result of natural interannual vari-
ability, related to water exchange between ocean and land during
El Nifio/Southern Oscillation (ENSO) cycles®. After removing this
variability, the underlying rate of GMSL rise was 3.3 & 0.4 mm yr~!
for both decades, with neither deceleration nor acceleration of
GMSL inferred over 1993 to 2014. This lack of observed acceleration
of GMSL contrasts with a simultaneously increased contribution
from the Greenland ice sheet (GIS) and a less certain increase from
the Antarctica ice sheet (AIS) overall’, and is inconsistent with the
positive acceleration presented in century-long tide gauge data® and
global mean sea-level reconstructions’.

By comparing tide gauge and satellite altimeter sea-level
observations, a recent study® identified a possible systematic
drift within the altimeter record, particularly affecting the first
six years (1993-1999). This systematic error erroneously ele-
vates the GMSL trend during 1993-1998 by between 0.9 £ 0.5
and 1.5 & 0.5mmyr~', depending on whether a glacial isostatic

adjustment (GIA) or Global Positioning System (GPS) data set was
used to correct for the effects of land motion at tide gauges used
in the bias estimation process. After removing these biases, the
estimated rate of GMSL rise from 1993 to mid-2014 was between
2.6+ 0.4and 2.9+ 0.4mmyr ', with a positive but not statistically
significant acceleration of 0.041 + 0.058 mm yr?, compared with a
not statistically significant deceleration of —0.057 & 0.058 mm yr—2
for unadjusted data.

GMSL rise results from the ocean thermal expansion, loss of
mass from glaciers’, the GIS and the AIS’, and changes in land
water storage from climate variability and anthropogenic effects'®'".
To study how the rate of the GMSL rise varies during the satellite
period, we investigate the time-varying intrinsic trend in GMSL
and these contributing components by separating them from their
interannual variability using an adaptive data analysis approach.

An intrinsic trend is defined as ‘an intrinsically fitted monotonic
function or a function in which there can be at most one extremum
within a given data span®. Unlike the commonly used linear
polynomial trend that requires a priori assumptions regarding
stationarity and linearity of time series, the intrinsic trend is not
defined by a predetermined functional form of the trend and,
hence, is more adaptive to the underlying physical properties
of observations. The method we apply to derive the intrinsic
trend in GMSL and its components is ensemble empirical mode
decomposition (EEMD)", which is based on the empirical mode
decomposition (EMD) method designed for adaptive analysis of
nonlinear and non-stationary time series (see Methods and
Supplementary Information) and has only recently been applied to
sea-level trend estimation®. The main benefit of using EMD is that it
can separate non-stationary oscillations (such as natural variations
on different timescales) from the long-term trend, and the trend is
found empirically without any assumptions about its shape.

Figure la presents the unadjusted GMSL from four different
processing groups, and the adjusted CSIRO GMSL derived using
vertical land motion (VLM) estimates at tide gauges based on GIA
and GPS°. We note there is not yet a homogeneously reprocessed
altimeter data set that addresses the likely systematic bias estimated
by ref. 6. In the absence of such a data set, an assessment of all avail-
able records (including the adjusted record from ref. 6) is entirely
appropriate. The intrinsic trend and interannual variability of each
time series are shown in Fig. 1a,b, respectively. The significance of
the intrinsic trend is tested against a null hypothesis of red back-
ground noise with the same lag-1 autocorrelation as the raw time
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Figure 1| Global mean sea level (GMSL). Curves show the GPS-based and
GlA-based adjusted GMSL, and unadjusted GMSL from four different
groups. a, GMSL and the time-varying secular trend from EEMD analysis.

b, The interannual variability of GMSL. ¢, The instantaneous rate of GMSL
rise. The uncertainties of the derived interannual variability, intrinsic secular
trend, and its instantaneous rate are shown in coloured shades.

series (Supplementary Fig. 1), and it is shown that the increase in
the intrinsic trend of the GPS-based adjusted GMSL record is statis-
tically significant during the recent decade (Supplementary Fig. 2).

We derive the rate of the time-varying intrinsic trend by
calculating its first-order temporal derivative (Fig. 1c). Consistent
with previous studies’, the unadjusted GMSL exhibits a slightly
decreasing rate of rise from about 3.5mmyr~' during the first
decade to 3.0-3.3mmyr~' during the second. In contrast, the rate
of the GPS-based adjusted GMSL rise increases by 0.5 mm yr~" from
about 2.4 £ 0.2 (1o) mmyr " in 1993 to around 2.9 £+ 0.3 mm yr™'
in 2014 (2.8 £ 0.2 t0 3.2 £ 0.3 mmyr ' for the GIA-based adjusted
GMSL). That is, the time-varying trend of the adjusted altimeter
data suggests an acceleration in GMSL in agreement with ref. 6,
with the dominant increase in the rate of rise occurring in the
recent decade.

Figure 1b shows the interannual variability of all GMSL records
derived by EEMD. It includes a significant drop of water level related
to the transfer of water from the ocean to the land during the strong
La Nifa event in 2011 and the subsequent rapid recovery in the
following two years'. This interannual variability agrees well with
the interannual variability of the land water storage based on the
global hydrological model" and the interannual variability of the
thermosteric sea level"”, and is significantly correlated (0.42 for the
unadjusted CSIRO-based time series, and up to 0.56 for the others)
with the ENSO index'®. By definition of the EMD method, this
interannual variability does not contribute to the intrinsic trend over
the whole period.

We determined global mean steric sea-level (GMSSL) anomalies
using a range of subsurface measurements of temperature and
salinity data sets'®. The GMSSLs from these data sets exhibit wide
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Figure 2 | Global mean steric sea level (GMSSL). Coloured curves show the
global mean steric sea level from seven data sets. a, The GMSSL and its
time-varying secular trend. b, The interannual variability of GMSSL.

¢, The instantaneous rate of GMSSL rise. The uncertainties of the derived
interannual variability, intrinsic secular trend, and its instantaneous rate are
shown in coloured shades. In ¢, the dots denote the median of all GMSSL
records at each year, with the uncertainty estimated using the median
statistical method. Note that the different length of the GMSSL time series
affects the median rates over the last few years, and consequently affects
the budget over the last few years as shown in Fig. 4.

discrepancies owing to the inhomogeneous observations in the
ocean, different data quality control procedures, XBT (expendable
bathythermograph) bias corrections, mapping methods and model
structures®. These discrepancies are especially pronounced until
2005 when sufficient spatial data coverage was obtained from Argo
floats. We select ocean temperature—salinity data sets that do not
have obvious discontinuities in the GMSSL time series and whose
linear trend of GMSSL during the Argo period (2005-2014) remains
within the 20 range of that derived from three Argo gridded data
sets (Supplementary Table 1). Figure 2 shows monthly GMSSL
anomalies, interannual variability and the intrinsic trends from
seven data sets based on the above selection criteria.

Even with these relatively strict criteria, the GMSSLs of
the selected ocean temperature-salinity data sets still exhibit
remarkable differences over the whole period. The instantaneous
rate of the GMSSL of some models indicates acceleration, whereas
others not. To reduce the impact of the skewness, we estimate the
instantaneous rate of GMSSL rise as the median of that derived from
seven data sets at each year. The derived mean thermal expansion
contribution is about 0.94 £ 0.16 mm yr~" during 1993-2014, which
is equivalent to about 0.48 4 0.08 W m™ net surface heat flux into
the ocean, and consistent with the observed top-of-atmosphere heat
imbalance* . The ensemble estimate of the GMSSL rise suggests little
acceleration during the satellite altimetry period.

The main contributions to the global ocean mass changes are
from the GIS, the AIS and glaciers. The GIS and AIS mass changes
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Figure 3 | Global mean ocean mass change. Curves show the land-glacier,
AlS and GIS and anthropogenic TWS contributions to GMSL. a-¢, Each
mass component and its secular trend (a), the interannual variability (b),
and the instantaneous rate (c) of the ocean mass change. In ¢, the black
dots and their error bars show the rate of thermal expansion, GMSSL, from
Fig. 2 for comparison with the mass change rate. The uncertainties of the
derived interannual variability, intrinsic secular trend, and their
instantaneous rates are shown in coloured shades.

are investigated using the estimates based on altimetry, gravimetry
and mass flux data for 1993-20127, and the GRACE observations
during 2003-2014 by adjusting its trend to match the published
data over 2003-2009* (Supplementary Fig. 5). The glacier data are
estimated from a glacier mass balance model driven by gridded
climate observations’.

Figure 3 shows that all three sources of mass loss exhibit an
increasing contribution to GMSL. The rate of glacier mass loss inc-
reased over 1993 to 2005, from 0.60 % 0.15 to 0.87 £ 0.2l mm yr ™"
GMSL equivalent, but is then nearly unchanged up to 2013 (Fig. 3¢).
The GIS mass loss increased from around 0.11 + 0.03 mmyr™’
in 1993 to around 0.85 £+ 0.03mmyr~' in 2014, approaching an
average acceleration of 0.03 mm yr—2. The rate of the AIS mass loss
is around 0.22 £ 0.02mmyr ' in 1993, and only slightly increases
to 0.31 &+ 0.02mmyr™" in 2014. These trends agree quantitatively
with previous linear estimates” over the whole satellite period, and
contribute to the acceleration of GMSL.

Another contribution to changes in the global ocean mass is
from terrestrial water storage (TWS), including that associated
with anthropogenic activities (groundwater extraction, irrigation,
impoundment in reservoirs, wetland drainage, and deforestation)
and natural climate variability. Here, the anthropogenic TWS
changes are based on the estimates of ref. 11, with their groundwater
depletion being replaced with the estimates of ref. 10, which are 20%
smaller. This smaller estimate is consistent with 80% of the extracted
ground water making its way to the ocean®. The intrinsic trend
and its instantaneous rate of the anthropogenic TWS show a slightly
increased contribution to GMSL from around 0.11 4 0.04 mm yr™'
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Figure 4 | Instantaneous closure of the global mean sea-level budget.
Yearly instantaneous rate of change of the GPS-based adjusted (black dots)
and mean unadjusted GMSL (grey stars) and that of the GMSSL, and ocean
mass contributions from the GIS, the AIS, the anthropogenic TWS and
glaciers, and ocean thermal expansion (each shown in coloured shades,
ordered from top to bottom). The blue dots denote the sum of the
instantaneous rates of change of each component with its uncertainty
estimated as the square root of the sum of the squares of the uncertainty in
each instantaneous rate, as shown in previous figures. The time series of
the loss of mass from the glaciers and the anthropogenic TWS stops in
2012, and 2009, respectively. Their rates in the years up to 2014 are
assumed unchanged and shown in a lighter colour.

during the first decade to about 0.24 + 0.06 mmyr~' during the
second (Fig. 3¢).

Regarding the natural variability of TWS, global values are
not reliable before the GRACE mission in 2002. Interannual
fluctuations of TWS based on the continental water balance
model are estimated as about 0.25mmyr~' (GMSL equivalent)
during 1993-1998*, whereas the GRACE observations during
2002-2012 suggested a natural TWS contribution to GMSL of
around —0.71 4 0.20 mm yr~" (ref. 25). This rate is approximately
consistent with the 5.5mm fall in GMSL over 2002-2012 in the
interannual variability (Fig. 1b), which is highly correlated with the
La Nifa-like variability in the Pacific'®, when precipitation decreases
over the ocean and increases over the land. Because of the strong
ENSO-related interannual variability, there can be significant trends
in TWS over periods of a decade or shorter. Therefore, short-period
linear trend estimates do not adequately represent the time series
over the whole satellite altimeter period, and it is likely that the total
trend is small (but poorly quantified).

Using time series of GMSL, GMSSL and all components of global
ocean mass change, Fig. 4 shows the instantaneous budget of GMSL
over the satellite period. The thermal expansion component is about
50% of the total contributions in 1993. Although the rate of this
contribution did not change much throughout the record, by the
end of the record it is reduced to about 30% of the sum of the
contributions because of the acceleration in the global ocean mass
component, consistent with a previous estimate of the changing
relative roles of ocean thermal expansion and ocean mass®. The
ocean mass change is initially dominated by the contribution of
glacier mass loss, with smaller contributions from the GIS and AIS
mass loss and anthropogenic TWS changes. But in the recent decade,
the acceleration of the mass loss from the GIS was the largest, and its
contribution to the GMSL became almost equal to that from thermal
expansion and glaciers by 2014. The year-by-year contribution from
the AIS mass loss is nearly constant while the glacier contribution
increases slowly.

In all future projection scenarios of the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change”, the largest
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contribution to changes in GMSL is the ocean thermal expansion,
accounting for 30-55% of the projection, whereas the glaciers
are the second largest, accounting for 15-35%. Our analysis of
recent observations shows that the acceleration of ocean thermal
expansion during 1993-2014 is not significant. Climate model
simulations indicate the fall in ocean heat content following the
1991 volcanic eruption of Mount Pinatubo and the subsequent
recovery has probably resulted in a rate of thermal expansion about
0.5mmyr~" higher than would be expected from greenhouse gas
forcing alone®. The recovery in ocean thermal expansion following
major volcanic eruption takes more than 15 years®*. Thus, the
underlying acceleration of thermal expansion in response to the
anthropogenic forcing may emerge over the next decade or so,
resulting in a further acceleration in the rate from that reported
here and recent estimates®. In contrast to the lack of observed
acceleration in the ocean thermal expansion, there has been a
significant acceleration in the mass contributions, dominated by the
increased GIS mass loss. This results in an approximate closure of
the sea level budget throughout the study period from 1993 to 2014
and, importantly, both the sum of contributions and the GPS (and
GIA)-based adjusted altimeter rates indicate an acceleration in sea
level over the satellite altimeter period.

This approximate but improved closure of the sea-level budget
throughout 1993-2014 is progress with respect to the Fifth Assess-
ment Report of the Intergovernmental Panel on Climate Change,
and increases confidence in our observations and understanding
of recent changes in sea level. The study period is still short and
ongoing observations are required to understand the longer-term
significance of this finding, and to identify the contributions of
decadal and multi-decadal variations that are unresolved in the
20-year-long records. The estimated increase in the rate of rise
has important implications for projections of sea-level rise and
for society.

Methods

Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 19 October 2016; accepted 22 May 2017;
published online 26 June 2017

References

1. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis
(eds Stocker, T. F et al.) Ch. 13, 1137-1216 (IPCC, Cambridge Univ.

Press, 2013).

2. Jevrejeva, S., Moore, J. C., Grinsted, A. & Woodworth, P. L. Recent global sea
level acceleration started over 200 years ago? Geophys. Res. Lett. 35,

L08715 (2008).

3. Cazenave, A. et al. The rate of sea-level rise. Nat. Clim. Change 4,
358-361 (2014).

4. Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry,
Argo, and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

5. Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally averaged sea
level budget on seasonal to interannual timescales. J. Geophys. Res. 113,
http://dx.doi.org/10.1029/2007jc004517 (2008).

6. Watson, C. S. et al. Unabated global mean sea-level rise over the satellite
altimeter era. Nat. Clim. Change 5, 565-568 (2015).

7. Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338,
1183-1189 (2012).

8. Ezer, T, Atkinson, L. P, Corlett, W. B. & Blanco, J. L. Gulf Stream’s induced sea
level rise and variability along the US mid-Atlantic coast. . Geophys. Res. 118,
685-697 (2013).

9. Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier
mass loss to anthropogenic and natural causes. Science 345, 919-921 (2014).

10. Doll, P, Miiller Schmied, H., Schuh, C., Portmann, E T. & Eicker, A.
Global-scale assessment of groundwater depletion and related groundwater
abstractions: combining hydrological modeling with information from well
observations and GRACE satellites. Wat. Resour. Res. 50, 5698-5720 (2014).

11. Wada, Y. et al. Past and future contribution of global groundwater depletion
to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012).

12. Wu, Z., Huang, N. E,, Long, S. R. & Peng, C. K. On the trend, detrending, and
variability of nonlinear and nonstationary time series. Proc. Natl Acad. Sci.
USA 104, 14889-14894 (2007).

13. Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition:

a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1-41 (2009).

14. Huang, N. E. et al. The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc.
Lond. A 454, 903-995 (1998).

15. Boening, C., Willis, J. K., Landerer, F. W, Nerem, R. S. & Fasullo, J. The 2011
La Nina: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

16. Llovel, W. et al. Terrestrial waters and sea level variations on interannual time
scale. Glob. Planet. Change 75, 76-82 (2011).

17. Yi, S., Sun, W,, Heki, K. & Qian, A. An increase in the rate of global mean sea
level rise since 2010. Geophys. Res. Lett. 42, 3998-4006 (2015).

18. Chen, X. & Wallace, J. M. ENSO-like variability: 1900-2013. J. Clim. 28,
9623-9641 (2015).

19. Storto, A. et al. Steric sea level variability (1993-2010) in an ensemble of ocean
reanalyses and objective analyses. Clim. Dynam. http://dx.doi.org/10.1007/
$00382-015-2554-9 (2015).

20. Xue, Y. et al. A comparative analysis of upper-ocean heat content variability
from an ensemble of operational ocean reanalyses. J. Clim. 25,

6905-6929 (2012).

21. Trenberth, K. E. & Fasullo, J. T. Tracking Earth’s energy. Science 328,
316-317 (2010).

22. Harig, C. & Simons, F. J. Accelerated West Antarctic ice mass loss continues to
outpace East Antarctic gains. Earth Planet. Sci. Lett. 415, 134-141 (2015).

23. Wada, Y. et al. Fate of water pumped from underground and contributions to
sea-level rise. Nat. Clim. Change 6, 777-780 (2016).

24. Milly, P. C. D., Cazenave, A. & Gennero, M. C. Contribution of climate-driven
change in continental water storage to recent sea-level rise. Proc. Natl Acad. Sci.
USA 100, 13158-13161 (2003).

25. Reager, J. T. et al. A decade of sea level rise slowed by climate-driven hydrology.
Science 351, 699-703 (2016).

26. Cazenave, A., Lombard, A. & Llovel, W. Present-day sea level rise: a synthesis.
C. R. Geosci. 340, 761-770 (2008).

27. IPCC in Climate Change 2013: The Physical Science Basis
(eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

28. Church, J. A., White, N. J. & Arblaster, J. M. Significant decadal-scale impact of
volcanic eruptions on sea level and ocean heat content. Nature 438,

74-77 (2005).

29. Gregory, J. M. Long-term effect of volcanic forcing on ocean heat content.
Geophys. Res. Lett. 37, 122701 (2010).

30. Fasullo, J. T., Nerem, R. S. & Hamlington, B. Is the detection of accelerated sea
level rise imminent? Sci. Rep. 6, 31245 (2016).

Acknowledgements

The work was done while X.C. visited CSIRO Oceans and Atmosphere (Hobart,
Australia) as a CSIRO—Chinese Ministry of Education visiting scholar, sponsored by the
China Scholarship Council. The authors thank A. B. A. Slangen for her useful comments
and assistance with data sets. X.C. was supported by the National Key Basic Research
Program of China under Grant 2015CB953900 and the Natural Science Foundation of
China under Grant 41521091 and 41330960. The altimeter calibration and validation was
supported by the Australian Integrated Marine Observing System (IMOS)—IMOS is a
national collaborative research infrastructure, supported by the Australian Government.
J.A.C., X.Z., D.M. and B.L. were supported by the Australian Climate Change Science
Program (ACCSP) and National Environmental Science Programme (NESP). M.A.K.
was supported by an Australian Research Council Future Fellowship (Project ID
FT110100207).

Author contributions

X.C., X.Z. and J.A.C. undertook the analysis of global sea-level budget and led the
drafting of this manuscript. X.C. carried out the EEMD analysis and produced all figures.
M.A.K. and C.S.W. undertook the adjustment of satellite altimeter data. X.Z. processed
steric sea-level data sets; D.M. and B.L. processed the altimeter and terrestrial water
storage data sets. C.H. processed the Greenland and Antarctic ice sheet data sets. All
authors contributed significantly to the drafting and revision of this manuscript.

Additional information

Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations. Correspondence and requests for materials should be
addressed to X.C. and X.Z.

Competing financial interests

The authors declare no competing financial interests.

4 NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://dx.doi.org/10.1038/nclimate3325
http://dx.doi.org/10.1038/nclimate3325
http://dx.doi.org/10.1029/2007jc004517
http://dx.doi.org/10.1007/s00382-015-2554-9
http://dx.doi.org/10.1007/s00382-015-2554-9
http://dx.doi.org/10.1038/nclimate3325
http://www.nature.com/reprints
www.nature.com/natureclimatechange

NATURE CLIMATE CHANG

DOI: 10.1038/NCLIMATE3325

LETTERS

Methods

Data. Satellite altimetry. We use six different altimetry-based monthly sea-level
data from four processing groups: Archiving Validation and Interpretation
Satellite Oceanographic Center (AVISO; https://podaac.jpl.nasa.gov/dataset/
MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V4); Colorado University

(CU, Release 4; http://sealevel.colorado.edu/files/2015_rel4/sl_ns_global.txt);
Goddard Space Flight Center (GSFC; https://www.aviso.altimetry.fr/en/data/
products/ocean-indicators-products/mean-sea-level.html); Commonwealth
Scientific and Industrial Research Organization (CSIRO) and University

of Tasmania (ftp://ftp.marine.csiro.au/pub/legresy/gmsl_files/ CSTRO_Alt_
refined.csv); adjusted CSIRO data set using a model of glacial isostatic
adjustment to estimate vertical land motion at tide gauges; and adjusted CSIRO
data set using GPS data to estimate vertical land motion at tide gauges. All six data
sets are based on TOPEX, Jason-1 and OSTM/Jason-2 data. The global average is
computed over 66° S-66° N for AVISO, CU and GSFC, but over 65° S-65° N

for CSIRO. Detailed descriptions of each data set are available in the
corresponding websites.

Steric sea-level data sets. We use seven products describing the global ocean
monthly temperature-salinity to compute the global mean steric sea level. Two of
these are objective analyses based on optimal interpolation without constraints
from ocean model dynamics, and five are reanalyses based on data assimilation
with models. From 20 global ocean temperature-salinity data sets'®, we select a
subset of seven ocean temperature—salinity data sets that do not have obvious
discontinuities in the GMSSL time series and whose linear trends of GMSSL during
the Argo period (2005-2014) remain within the 20" range of that derived from
three Argo gridded data sets. Supplementary Table 1 provides the basic
information of these data sets.

Land glaciers. The global yearly glacier mass data set used in this paper is produced
with a glacier model driven by gridded climate observations’.

Greenland and Antarctic ice sheets. Greenland and Antarctic ice sheet records
during 1993-2012 available at http://imbie.org/data-downloads” are used in this
study. To extend the records to the end of 2014, observations based on the GRACE
satellite are used. Noting the potential GIA error in GRACE, especially for
Antarctica®, we adjusted the trend of the GRACE records so that they agreed with
the published trends over 2003-2009. Then two records are connected in 2003.
After 2003, the GRACE record is used. The derived monthly time series are shown
in Supplementary Fig. 5.

Anthropogenic terrestrial water storage. The yearly data of anthropogenic terrestrial
water storage are extracted from the century-long time series'’, after their
groundwater depletion is replaced with the most recent estimates'’.

Ensemble empirical mode decomposition method. The main method used in this
study is ensemble empirical mode decomposition (EEMD)"?, which was developed
on the basis of the empirical mode decomposition (EMD)'* method. The EMD and
EEMD methods have been applied to oceanic and climatic time series analysis™,
and are also used to study regional®** and global sea-level variability*. Here we
briefly introduce the general decomposition procedure and mainly introduce the
tests used to assess statistical significance and the estimation of the uncertainty of
the intrinsic secular trend derived by the EMD/EEMD method.

Decomposition and intrinsic secular trend. In EMD, a time series x(t) is
decomposed into a set of amplitude-frequency-modulated oscillatory functions
(so-called intrinsic mode functions, IMFs) C;(t), j=1,2,...n and a residual

R(t): x(t)=>_", Ci(t) +R(t) through a sifting process. The following is
undertaken: (1) locate all maxima and minima and connect all maxima (minima)
with a cubic spline as an upper (lower) envelope of the time series; (2) compute the
difference between the time series and the mean of the upper and lower envelopes
to yield a new time series h(t); (3) for the time series h(t), repeat steps 1 and 2 until
upper and lower envelopes are symmetric with respect to zero mean under the
stopping criteria'>', then an IME, C;(#), is derived as the time series /(t); and

(4) subtract C;(t) from original time series to yield a residual R(¢) and treat R(t) as
the original time series and repeat steps 1-3 until the residual R(¢) becomes a
monotonic function or a function with only one extremum; then, the whole sifting
process is completed and all IMFs and the residual function, namely, the intrinsic
trend of x(t), are obtained.

The EEMD approach is based on EMD". In EEMD, multiple noise realizations
are added to the time series x (), from which an ensemble average of the
corresponding IMFs is extracted to yield scale-consistent signals. The main steps in
the EEMD are as follows: (1) add a white noise series to the targeted data;

(2) decompose the data with the added white noise into IMFs; (3) repeat step 1 and
2 again and again, but with different white noise series each time; and (4) obtain
(ensemble) means of the respective IMFs of the decompositions as the final result.
The advantage of the EEMD is that by using an ensemble mean, non-physical
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oscillations due to random data errors are reduced and thus low-frequency modes
are more accurate.

It is proved that the added white noise with the variance o will have at most
o/+/N impact on the resulting IMFs", where N is the number of ensemble
members. When N increases, this impact is negligibly small. In this paper, we
always use the white noise with variance o =0.2 relative to the variance of the
original time series, and N =1,000 ensemble members.

As demonstrated in previous applications of the EEMD method involving trend
analysis of global mean surface temperature®, global land surface air temperature”,
and the sea-level observations along the eastern US coast®”, the residual function
R(t) is derived by removing any, but not a predetermined, variability on shorter
timescales than the length of time series, as represented by the IMFs C;(t).
Consequently, R(f) can take any unspecified shape and will preserve the potential
variability on longer timescales than the length of time series. For the observations
used here (22 year duration for the altimetry), the relatively high-frequency
variability on the interannual timescales will be shown by summing all of the IMFs,
that is, E]":l Ci(t) and the residual R(t) will be regarded as the intrinsic trend.

It should be noted that the intrinsic trend R(t) is in the same unit as the raw
time series (in this case for the global mean sea level used here, the unit is
millimetres). Taking the first-order time derivative of the time-varying intrinsic
trend yields the instantaneous rate of the trend, in units of millimetres per year for
global mean sea-level rise, which provides more time-varying information on how
the intrinsic trend has evolved within the given time region, compared with a
typical fitted polynomial and the time-varying estimations based on the sliding
window approach®?*.

The validity of the intrinsic trend is strongly based on the specified data
duration. The properties of the trend beyond the data length require further
investigation with more observations. In this study, the potential decadal variability
of GMSL on the timescale longer than the length of satellite altimetry cannot be
separated from the secular trend, which implies that the accelerated GMSL may
partially reflect the internal decadal variability, as well as the effects of the
anthropogenic forcing.

Significant test of the intrinsic secular trend. To test the statistical significance of the
intrinsic secular trend, one needs to reject a null hypothesis that it arises by chance
for stochastic processes with zero means at given confidence levels. In climate
sciences, two widely used null hypotheses are that the underlying processes are
noise characterized as white (that is, no temporal correlation) or red (with lag
temporal correlation). There are many methods to test the statistical significance of
a linear, curve-fitted, or time-varying trend against a white or red noise null
hypothesis******. Here we applied one approach developed for testing the
time-varying trend derived by the EMD/EEMD method*. Although the detail of
the statistical significance test is given in their Supplementary Section 2, the general
procedures of this approach are introduced as follows, in order for the integrity of
this work.

For any time series x(¢) with time-varying secular trend R(t) derived by the
EEMD method, the statistical significance test includes: (1) computing the lag-1
autocorrelation o of the time series x(t). If « =0 then the null hypothesis that the
white background noise is applied; if @ > 0, then the null hypothesis that the red
background noise is applied; (2) generating 5,000 samples of red noise time series
with the same temporal data length of x(t) and the lag-1 autocorrelation o;

(3) deriving the intrinsic trend of each generated red noise time series by using the
EEMD method. This yields an empirical probability density function of the
intrinsic trends, which is approximately normally distributed, at any temporal
locations; (4) comparing the intrinsic trend of the studied time series with the
two-standard-deviation spread value of the trends of the red noise time series
(around 95% of confidence) at any temporal locations. If the former is larger, the
intrinsic trend of the studied time series is considered statistically significant and
the null hypothesis that the intrinsic trend of the time series is from noise could be
rejected; (5) taking the first-order time derivative of the intrinsic trend yields its
instantaneous rate. If the intrinsic trend is statistically significant, we will consider
its instantaneous rate is significant.

In this approach, the noise time series are generated on the basis of the
AR(1) process x(t) =ax(t — At)+w(t), where the coefficient « is the
autoregressive parameter (that is, lag-1 correlation coefficient), At is the sampling
rate and w (t) is the white noise with the unit standard deviation. A more general
case is to generate the red noise on the basis of the ARMA(p,q) process***.
Empirically, the selection of the red noise model may change the probability
density function shape of the EEMD trends of each red noise time series, but it will
not change the general patterns of the statistical significance test if we go through
all possibilities of the lag-1 autocorrelation from 0 to 0.99. In this study, we adopt
the AR(1) model.

Taking the GPS-based adjusted GMSL time series as an example,
Supplementary Figs 2-4 present the analysis of its intrinsic trend, and the test of its
statistical significance. Supplementary Fig. 2 shows that the lag-1 autocorrelation
coefficient of the GPS-based adjusted GMSL is & =0.84. With this lag-1
autocorrelation coefficient, 5,000 AR(1) time series are generated and then
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decomposed by the EEMD method to derive their intrinsic trend

(Supplementary Fig. 2a). Both thick black lines in Supplementary Fig. 2a are
two-standard-deviation spread lines of the trend of AR(1) time series. Note that
these intrinsic trends of the background noise are dimensionless. To test the
statistical significance of the intrinsic trend of GPS-based adjusted GMSL time
series, which is in the same unit of millimetres, we divide it by the standard
deviation of the linearly detrended GMSL time series (red line in Supplementary
Fig. 2a) and compare it with two standard deviations of the intrinsic trend of the
red background noise at each temporal location. If the former is larger, the trend of
GMSL is considered statistically significant. Supplementary Fig. 2b,c presents the
comparison at two randomly selected years 1999 and 2009, respectively, in which
the trend of GMSL time series is not statistically different from the trend of AR(1)
red noise with 0.84 lag-1 autocorrelation in 1999, but significantly different in 2009.
In Supplementary Fig. 2a, comparing the temporal variability of the intrinsic
secular trend of the GPS-based adjusted GMSL time series with the
two-standard-deviation line (around 95% confidence) of the intrinsic trend of the
5,000 AR(1) processes with 0.84 lag-1 autocorrelation shows that the intrinsic trend
of GPS-based adjusted GMSL becomes statistically significant since 2005.

As for the definition of the intrinsic trend'?, this statistical significance test is
also valid only during the studied period, because the properties of the intrinsic
trend beyond the data length may change a lot, and so their statistical significance.

To test the time series with different lag-1 autocorrelation, Supplementary
Fig. 3 shows the two-standard-deviation line (around 95% confidence) of the
intrinsic secular trend of the 5,000 AR(1) processes with the lag-1 autocorrelation
ranging from 0 to 0.99. The trend spread depends on the value of lag-1
autocorrelation. When the noise is getting redder (larger lag-1 autocorrelation), the
corresponding spreads become wider”.

Based on the 95% confidence levels of different AR(1) time series with lag-1
autocorrelation ranging from 0 to 0.99, the statistical significance of the intrinsic
secular trend of the GMSL, the GMSSL, and the global ocean mass change can be
tested, as shown in Supplementary Fig. 4a—c, respectively.

Estimation of the uncertainty of the intrinsic trend. To estimate the uncertainties in
the intrinsic trend, the down sampling approach® is applied. This method is also
used to study the increasing flooding hazard in Miami Beach, Florida*.

For the monthly time series of global mean sea level, global mean steric sea
level, or the Greenland and Antarctic ice sheet mass loss, we randomly pick a value
of the time series for each calendar year to represent the entire annual average. This
step can theoretically yield 12 (ref. 22) different time series for 22 years of monthly
data. We randomly choose 1,000 series and re-compute their intrinsic secular
trend, and then obtain the mean of the trend, and the spread of the trends provides
the confidence interval. For the yearly time series of glacier and anthropogenic
terrestrial water storage time series, we randomly pick up a value of the time series
within two standard deviations of the time series to represent the spread of the time
series, and choose 1,000 different series and re-compute their intrinsic secular
trend. The rate of the intrinsic trend is obtained by computing the mean of the time
derivative of each intrinsic trend and its uncertainty. This approach can also be
applied to estimate the uncertainty of the other IMFs of the time series if the
timescale of the function is longer than a month.

Since the higher-frequency variability of the time series is gradually separated
using EEMD, the uncertainty of the intrinsic trend is generally less than the
uncertainty estimation of the linear trend of original whole time series. The
uncertainty of the intrinsic trend at the start and end of the data range is relatively
large given the edge effects. This is unavoidable for any temporally local analysis
method, such as the Gibbs effect of the Fourier transform and the ‘cone of
influence’ of wavelet analysis®. Compared with these methods, the temporal
locality of EEMD is smaller, and so are the uncertainties at the two ends, as
discussed in the study of uncertainty of the global sea surface temperature®.

The above uncertainty estimation of the intrinsic trend does not take into
account systematic (non-averaging) error terms present in the time series. For the
case of the adjusted GMSL time series, uncertainty associated with the bias drift
estimation for each mission needs to be considered. The above uncertainty
estimation method can be applied to each realization of the time series, with each
realization generated sampling the bias drifts and intra/inter-mission bias and
associated uncertainties. Applying the EEMD analysis to each time series and
estimating the uncertainty of the derived intrinsic trend gives a joint uncertainty
estimation of the instantaneous rate of the GPS-based adjusted GMSL rise (not
shown). The slightly higher uncertainty of the instantaneous rate of the GMSL
change (from £0.6 mm yr~" during 1993 to £0.4 mm yr~' during 2014) reflects the
different mission lengths and the split between TOPEX side A and side B in the
early part of the record.

Data availability. All data supporting the findings of this study are available from
the corresponding authors on request.
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