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Abstract: Given their high albedo and low thermal conductivity, snow and sea ice are considered
key reasons for amplified warming in the Arctic. Snow-covered sea ice is a more effective insulator,
which greatly limits the energy and momentum exchange between the atmosphere and surface, and
further controls the thermal dynamic processes of snow and ice. In this study, using the Microwave
Emission Model of Layered Snowpacks (MEMLS), the sensitivities of the brightness temperatures
(TBs) from the FengYun-3B/MicroWave Radiometer Imager (FY3B/MWRI) to changes in snow
depth were simulated, on both first-year and multiyear ice in the Arctic. Further, the correlation
coefficients between the TBs and snow depths in different atmospheric and sea ice environments were
investigated. Based on the simulation results, the most sensitive factors to snow depth, including
channels of MWRI and their combination form, were determined for snow depth retrieval. Finally,
using the 2012–2013 Operational IceBridge (OIB) snow depth data, retrieval algorithms of snow
depth were developed for the Arctic on first-year and multiyear ice, separately. Validation using
the 2011 OIB data indicates that the bias and standard deviation (Std) of the algorithm are 2.89 cm
and 2.6 cm on first-year ice (FYI), respectively, and 1.44 cm and 4.53 cm on multiyear ice (MYI),
respectively.
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1. Introduction

The Arctic plays an important role in the global climate system. In recent years, the
Arctic has attracted an increased amount of attention because climate change is expected to be
amplified 1.5 to 4.5 times in the region [1,2], which is known as “Arctic Amplification” [3–5].
The ice and snow are considered key reasons for the amplified warming in the Arctic [6,7].
Compared to ice, snow cover has a higher albedo and its thermal conductivity is nearly an
order of magnitude smaller than that of sea ice [8–12]. As a result, snow-covered sea ice is a
more effective insulator, which greatly limits the energy and momentum exchange between
the atmosphere and surface, and further controls the thermal dynamic processes of snow
and ice, such as the time and quantity of sea ice generation and snow melting. According to
Maykut’s research, 10 cm of snow on thin ice (i.e., ice thickness less than 1 m) in winter will
cause the heat flux through the interface to decrease by a factor of five [13]. In addition, snow
modifies the surface roughness of sea ice, affecting the atmosphere–ice drag coefficient and
interactions [14]. Snow depth is an essential parameter for determining the thickness of sea
ice from altimeters and calculating the freshwater budget in sea ice [15,16]. Understanding the
amount of snow on sea ice can help to provide more accurate estimates of precipitation [17],
and it is also very important for numerical simulations [18,19]. Therefore, accurate information
concerning snow on sea ice is essential to Arctic climate change research specifically and
global climate change research more generally [15,17,20].
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Nevertheless, due to the particular characteristics of the polar environment, it is dif-
ficult to conduct traditional in situ measurements. In contrast, satellite remote sensing
is a significant means to observe the ice and snow in polar region, and microwave ra-
diometers have become the primary sensors for snow depth observations in polar regions.
In the Arctic, only products pertaining to snow depth on first-year ice (FYI) have been
delivered [17,21,22], while the retrieval of snow depths on multiyear ice (MYI) is still in
the theoretical stage, and no operational products have been released. In 1998, Markus
proposed a retrieval algorithm for snow depths on FYI [23]. By comparing the brightness
temperature (TB) from the Special Sensor Microwave Imager (SSM/I) with in situ snow
depth data from the South Pole, gradient ratios of TBs between 19 and 37 GHz with vertical
polarization were used to retrieve the snow depths on sea ice in the Antarctic. In 2002,
Comiso applied this algorithm to the Advanced Microwave Scanning Radiometer-EOS
(AMSR-E), and based on this, the National Snow and Ice Data Center (NSIDC) released a
snow depth product [17,21,22]. In December 2018, based on the same algorithm, NSIDC
released a snow depth product from the Advanced Microwave Scanning Radiometer 2
(AMSR2) [24]. The algorithm is based on an assumption that scattering increases with
increasing snow depth, and scattering efficiency is greater at 37 GHz than at 19 GHz. For
snow-free sea ice, the gradient ratio is near zero and becomes increasingly more negative
as snow depth increases. Due to the limitations of this algorithm, only the snow depths
on FYI can be retrieved in the Arctic. In 2006, Markus et al. [25] found that using low-
frequency channels of AMSR-E or AMSR2 might improve the capability of snow depth
observation because low-frequency signals are more sensitive to deep snow and are less
affected by weather, ice, and white frost inside the snow. According to this inference, Ros-
tosky et al. [26] derived new retrieval coefficients based on a regression analysis using five
years of Operation IceBridge (OIB) airborne snow depth measurements (see Section 2.1.2
for a definition of OIB data) and extended the algorithm to take advantage of the lower
frequency channel at 7 GHz. The gradient ratios of the 18.7 and 6.9 GHz vertical TB were
used for statistical regression. The root mean square error (RMSE) values of the algorithm
compared with OIB data on FYI and MYI were 3.7 and 5.5 cm, respectively. In April 2019,
the University of Bremen provided a snow depth dataset based on this algorithm, but it
was not an operational product, with data only available in spring every year. In 2019,
Kilic et al. [27] used the Round Robin Data Package of the ESA sea ice CCI project, which
contains TBs from the AMSR2 collocated with measurements from ice mass balance buoys
(IMBs) and the NASA OIB airborne campaigns over Arctic sea ice. The snow depth over
sea ice was estimated with an RMSE of 5.1 cm, using a multilinear regression with the
TBs at 6, 18, and 36 GHz on vertical channels. Braakmann-Folgmann and Donlon [28]
proposed an artificial neural network using both AMSR2 and Soil Moisture and Ocean
Salinity (SMOS) data as input to retrieve snow depths in the Arctic in 2019. Trained using
seven years of OIB snow depth data, the algorithm is suitable for FYI and MYI, and the
bias and the RMSE relative to OIB snow depth data were 1.1 and 4 cm. In the same year,
Liu et al. [29] constructed an ensemble-based deep neural network to retrieve snow depth
by the TB from the Special Sensor Microwave Imager/Sounder (SSMIS) and used snow
depth from IMB data to train the network. The bias and RMSE between the obtained snow
data and the IMB data were 0.1 and 9.8 cm, respectively. In addition to these empirical
algorithms, Maaß et al. proposed an algorithm for snow depth retrieval on thick ice based
on radiative transfer theory using L-band TBs from SMOS [30]. They proved the possibility
of using SMOS horizontally polarized TBs to retrieve snow depths on thick ice (i.e., ice
thickness greater than 1.5 m) in cold conditions.

There are some limitations to these algorithms. First, for the AMSR-E algorithm, only
snow depths under 50 cm were calculated because the penetration depths of the microwave
signals at 36.5 was less than 50 cm, and the algorithm is only valid for FYI in the Arctic,
because the microwave signature of snow is very similar to the MYI signature, so snow
depth on MYI cannot be retrieved unambiguously. Second, the algorithms introduced
above directly use in situ data (or OIB data) and the observed TBs for sensitivity and
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correlation analysis. They are only statistical results, without considering the interaction
of microwave signals in different environments of snow and ice. The analysis results lack
a physical basis. Third, some algorithms (such as the Kilic algorithm [27]) only analyze
the correlation between snow depth and TB at a high sea ice concentration (SIC), which is
not suitable for areas with a low SIC. At last, compared with the regression algorithm, the
algorithms using neural networks or a deep learning method can obtain a better retrieval
accuracy. However, they are highly dependent on the accuracy and comprehensiveness
of the training dataset. When datasets used for training algorithm are not accurate (e.g.,
when model outputs are used in training for large domain applications or when machine
learning is applied to areas where observations are missing or sparse), large deviations
may occur in the calculation results [31].

In this study, we carried out research on the retrieval of snow depth on sea ice in
the Arctic using the TBs from the FengYun-3B (FY3B)/MicroWave Radiometer Imager
(MWRI). Based on the transmission process of microwave signatures in ice snow, and the
atmosphere, we first used a microwave radiative transfer model to simulate the changes in
TBs from the FY3B/MWRI with variations in snow depths on sea ice. In the simulations
results, the sensitivities of the TBs in each channel to the changes in snow depths were
obtained in different conditions; the correlations between them were also analyzed. We
then developed a retrieval algorithm of snow depth on sea ice using the TBs from the most
sensitive channels with various combination forms and the OIB snow depths in the Arctic.
Because the physical characteristics of FYI and MYIare different, we calculated the snow
depths for the two types of sea ice separately. Finally, we verified the retrieval snow depths
using 2011 OIB snow depth data.

2. Data and Model
2.1. Data

Several datasets were used for model input, algorithm development, snow depth
comparison, and verification. The spatial range of all datasets is the Arctic region (north
of 60◦N).

2.1.1. FY3B/MWRI Data

The FengYun-3 series satellites are the second generation of Chinese polar-orbiting
meteorological satellite. FY3B was launched in November 2010 and equipped with 11 pay-
loads including MWRI, which is a full-power dual-polarized microwave radiometer. The
MWRI scans the Earth conically with a 53.1◦ observation angle. The main specifications of
MRWI are listed in Table 1 [32].

Table 1. Specifications of the MWRI instrument.

Configuration Parameter Values

Frequency(GHz) 10.65 18.70 23.80 36.50 89.0
Polarization V, H V, H V, H V, H V, H

Bandwidth (MHz) 180 200 400 900 4600
Sensitivity (K) 0.5 0.5 0.5 0.5 0.8

Calibration Error (K) 1.5 1.5 1.5 1.5 1.5
Ground Resolution (km) 51 × 85 30 × 50 27 × 45 18 × 30 9 × 15

Dynamic Range (K) 3–340
Samples/scan 254

Scan Mode Conical scanning
Orbit Width (Km) 1400

Scan Period (S) 1.8

The FY3B/MWRI Level 1 swath TBs (Version 1.0) used in this study were obtained
from the National Satellite Meteorological Center (NSMC) of China. They are stored as
orbital swath records, with 28 separate ascending and descending files per day. Every file
contains 10 records of TBs from each channel with original resolutions.
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The TB data for vertical channels at 10.7, 18.7, 23.8, and 36.5 GHz, and both the vertical
and horizontal channels at 89 GHz, were used to calculate the sea ice concentration and
the snow depth on sea ice in the Arctic. Temporal coverage is from 1 January to 30 April
2011, 1 March to 30 April in 2012 and 2013, providing the overlap time between MWRI and
OIB data.

2.1.2. OIB Data

The snow cover information is still scarcely observed, despite its importance for polar
climate studies. Operation IceBridge, initiated in 2009, collects airborne remote sensing
measurements to bridge the gap between NASA’s Ice, Cloud and Land Elevation Satellite
(ICESat) mission and the subsequent ICESat-2 mission and has been widely used in model
running and the development or validation of snow depth algorithms [24–28]. Operation
IceBridge missions are conducted on an annually repeating basis, and the measurements
include coastal Greenland, coastal Antarctica, the Antarctic Peninsula, interior Antarctica,
the southeast Alaskan glaciers, and Antarctic and Arctic sea ice. Arctic and Greenland
campaigns are conducted during March, April, and May, while Antarctic campaigns take
place in October and November.

The IceBridge IDCSI4 dataset is used for algorithm development and verification;
which is released by NSIDC [33] (referred to as OIB data). It contains derived geophysical
data products, including sea ice freeboard, snow depth, and sea ice thickness in the Arctic,
Greenland, and Antarctica. To match the time of this study, data from campaigns in 2011
to 2013 were used. Because the nominal flight altitude for snow radar is 460 m, the snow
depth data had a footprint size of 14.5 m along-track. It was then averaged to a 40 m
length scale.

2.1.3. Sea Ice Type Data

When developing the snow depth algorithm, we needed to distinguish between FYI
and MYI because they have different physical properties. In this study, the global sea ice
type (SIT) data (Version 2.3) were used to type the sea ice when developing the snow depth
algorithm and calculating the snow depths in the Arctic. The SIT product was provided by
the European Meteorological Satellite Application Organization (EUMETSAT)/European
Organization for the Exploitation of Meteorological Satellites/Ocean and Sea Ice Satellite
Application Facility (OSI-SAF). It was retrieved from the combination of passive and active
microwave data using a Bayesian approximation method [34]. The product was delivered
daily at a 10 km resolution in a polar stereographic projection. The OSI SAF SIT product
states that the global sea ice type has the following accuracy requirements: target accuracy:
100,000 km2 monthly standard deviation (Std) in difference from the running mean. The
time coverage of the data used in this study is from 1 March to 30 April in each year from
2011 to 2013.

2.1.4. ERA-I Data

When running a microwave radiative transfer model, some parameters are required
as constant inputs for different snow conditions. In this study, the ERA-interim reanalysis
dataset (Version 2.0) was selected as the reference data for model input when analyzing the
sensitivities between TBs and snow depths. The dataset was a global atmospheric reanalysis
that was available from 1 January 1979 to 31 August 2019, released by the European Centre
for Medium-Range Weather Forecasts (ECMWF) [35]. The data assimilation system used to
produce the ERA-Interim includes a four-dimensional variational analysis with a 12-hour
analysis window. The spatial resolution of the dataset is approximately 80 km on 60 vertical
levels from the surface up to 0.1 hPa. In this study, only surface parameters were used,
including the sea surface temperature, sea surface pressure, u and v components of 10 m
wind, 2 m temperature, air humidity, sea ice concentration, and so on.
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2.1.5. Comparative Data

Two snow depth datasets were used as comparative data in this study. One is the
five-day averaged snow depth on FYI in the Arctic, which is from the Aqua/AMSR-E
Level 3 sea ice product released by the NSIDC (hereinafter referred to as the AMSR-E
product) [36]. As the only operational product for snow depth on Arctic FYI, the dataset
was obtained by the AMSR-E algorithm [17] and does not contain valuable data on MYI.

The other snow depth dataset was from the University of Bremen (hereinafter referred
to as SD_UB), which is calculated from the TBs of AMSR-E (2002–2011) and AMSR2 (2012–
present) according to the algorithm of Rostosky et al. [26]. This product contains snow
depth data both on FYI and MYI in the Arctic. Its time coverage is from November to
the last April/May on Arctic FYI and from March to April/May on MYI every year. The
SD_UB data are a unique dataset released till now containing the snow depth data on
Arctic MYI, although it is not an operational product.

We used the snow depths on FYI from January to April 2011 and those on MYI from
March to April 2011.

2.2. Microwave Emission Model

The Microwave Emission Model of Layered Snowpacks (MEMLS) was used to analyze
the relations between the snow depths and the TBs from the FY3B/MWRI in the Arctic,
which was the basis for determining the combination of channels when retrieving the
snow depth.

MEMLS was provided by the University of Bern and is based on radiative transfer
theory. It uses six-flux theory (streams in all space directions, i.e., six fluxes streaming
along and opposed to the three principle axes) to simulate multiple volume scattering and
absorption [37]. In the first version of MEMLS, the frequency range was 5–100 GHz, and
the correlation length was 0.05–0.3 mm. Matzler and Wiesmann [38] used the approved
Born approximation method to extend to coarse grained snow with correlation lengths
up to 0.6 mm, incorporating a strict definition of the physics of the scattering coefficient.
In 2015, Proksch et al. added a backscatter model to MEMLS to enable the simulation of
active microwave signals from snow [39]. As sea ice is different from the land, its radiation
characteristics vary with salinity due to the existence of brine pocket, while the scattering
characteristics change with the density of sea ice. Therefore, the reflectivity and emissivity
of the ice snow interface are quite different from those of the snow land interface. In
this study, the latest version (MEMLS3&a) was used to perform the simulation of passive
microwave radiation from snow packs. In this version, sea ice dielectric and scattering
functions were included to simulate the emission processes from sea ice layers beneath
the snow.

MEMLS simulates the TB observed on the snow surface, including the internal radia-
tion of snow and the reflected downward radiation from the sky. It has been widely used
in simulations of snow both on land and on ice [25,40–43].

3. Correlation and Sensitivity Analysis

In this study, the TBs from the FY3B/MWRI were simulated in different atmospheric
and surface conditions, with different snow depths on the two types of sea ice in the Arctic.
When setting the snow parameters, the atmospheric temperature and sea ice temperature
on 1 January 2011 in the ECMWF ERA-I data were used. Because liquid water has a high
dielectric constant and high absorption characteristics, absorption rather than scattering
becomes the main attenuation factor of wet snow compared to dry snow. Therefore, the very
small liquid water content in the snow will reduce the penetration depth of the microwave
signal and affect the emissivity, making it difficult to calculate the snow depth [44–47]. For
example, in wet snow with a liquid water content of about 1%, a TB of around 10.7 GHz is
about 10 K higher than that of dry snow at the same temperature, and the difference can
be as high as 100 K at 37 GHz [48]. Therefore, to clarify the sensitivity of the TB to snow
depth, only the TB of dry snow was simulated, that is, the input water content was set to
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zero. The snow particle size setting is usually related to snow density, and the correlation
length can be determined according to the snow density and particle size [38,49,50].

Due to the different physical characteristics of FYI and MYI, such as density, particle
size, and salinity, simulations were carried out for FYI and MYI separately in this study.
First, the density of MYI is lower than that of FYI in the upper layers. This is because of the
increased porosity in sea ice due to the evacuation of brine inclusions and the enlargement
of brine cavities during the melt season. Second, the salinity of MYI is lower than that of
FYI too. As with the temperature rising during the melting season, ice goes into a solution
in the brine to produce new lower equilibrium salinities. Melting snow and sea ice then
provide a source of fresh water percolating through the sea ice and greatly reducing the
salinity [51]. The density of sea ice will affect the volume scattering, while salinity will
affect the emissivity of sea ice through the change of the dielectric constant, resulting in
a different reflectivity of the ice snow interface, which will ultimately affect the observed
brightness temperature from the snow surface.

To analyze the radiation characteristics of snow under different conditions, the particle
size and snow density were set to different values in a single layer of snow simulation.
Following Garrity [45] and Carsey [6], the snow density on FYI was set to 200, 250, 300,
and 350 kg/m3; for MYI, it was 250, 300, 350, and 400 kg/m3. Based on Garrity [45]
and Castro-Morales [52], we set the range of snow depths to 5–70 cm at 5 cm intervals.
The emissivity of different channels was taken as the average value [6] on FYI and MYI.
As for the downward radiation from the sky, previous studies have shown that, in the
Arctic region, the annual atmospheric downward radiation in the microwave band was
mostly below 30 K, and the reflection can be ignored [7,53,54]. To ensure the accuracy
of the TB simulations, the TB of snow observed under different atmospheric conditions
was considered. Based on Tonboe [55] and Waters [56], this study simulated the TBs with
downward radiation in the absence of water vapor and with a vertical water vapor content
of 20 kg/m2, separately.

We also considered two types of snow layers, snow with only one layer and snow
layered every 5 cm. In the former case, the density and diameter of particles were varied,
while for the latter we used the same values referring to Tonboe et al. [57], because the in
situ snow density profile data on Arctic sea ice is scarce, and there is not enough to support
the simulation. The simulation process with different parameter settings is illustrated in
Figure 1.

First, the influence of the atmosphere on the TBs was analyzed by simulating the TBs
with and without water vapor in the atmosphere. The internal radiant TB from snow and
the observed TBs (including the reflected downward radiation from the atmosphere) are
shown in Figure 2.

It was found that there is no difference between the radiant TB from snow and the
observed TB, regardless of whether water vapor is present in the atmosphere. It can
be concluded that the influence of downward atmospheric radiation can be discounted.
Comparing the TBs in conditions with and without water vapor, it was found that, except
for the channels at 23.8 GHz and 89 GHz, the TBs are very similar in both cases on the other
channels. Thus, water vapor influences the TBs at 23.8 GHz and 89 GHz, but has no effect
on the observed TBs from other channels. Therefore, when using MEMLS for sensitivity
analysis later, we do not account for downward atmospheric radiation, and uniformly use
the observed TB without water vapor.

We then conducted the simulation for single-layer snow. In this condition, we set
the snow density to 300 kg/m3 and the particle diameter to 1.5 mm as an example. The
simulation results are shown in Figure 3.
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It can be seen that the observed TBs from vertical channels on FYI decrease as the
snow depth increases, and the higher the frequency is, the greater the variation of TBs is,
except for 89 GHz. As the snow depth changes from 5 to 70 cm, TB(10.7 V), TB(18.7 V), and
TB(36.5 V) decrease by 7 K, 26 K, and 60 K, respectively (TB denotes TB; V denotes vertical
polarization); when the snow is thinner, the attenuation of TB(89 V) is obvious. As the snow
depth increases, the attenuation tends to saturate, and the rate of TB change decreases
significantly. The results from the horizontal channels are similar to the above. The main
difference is that the rate of changes in TBs is lower than for vertical polarization. The
simulations on MYI are also similar to those on FYI. As the snow depth changes from 5 to
70 cm, TB(10.7 V), TB(18.7 V), and TB(36.5 V) decrease by 8 K, 22 K, and 30 K, respectively.

Third, we analyze the snow depth changes with the gradient ratios in different chan-
nels. The gradient ratio is defined as follows [53]:

GR( f 1p1/ f 2p2) =
TB( f 2, p2)− TB( f 1, p1)
TB( f 2, p2) + TB( f 1, p1)

(1)

where GR is the gradient ratio, and TB(f,p) is the TB at frequency f with polarization p
(horizontal or vertical). The changes in GRs with snow depth are shown in Figure 4.
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It can be seen from Figure 4 that, for both FYI and MYI, the simulated GR(10.7 V/
18.7 V) and GR(10.7 V/36.5 V) decrease as the snow depth increases. The difference is that
the former has a linear relationship with respect to snow depth, whereas the latter exhibits
a decreasing rate of change as the snow becomes deeper. GR(18.7 V/36.5 V) decreases
as the snow depth increases in FYI and tends to saturate when the snow depth is above
50 cm. However, for MYI, it no longer drops once the snow depth is around 30 cm. This
is consistent with the conclusion of Markus [23] that the GR can be used to calculate the
snow depth on FYI below 50 cm, but cannot be used to retrieve the snow depth on MYI.
The results for horizontal polarization are similar to those for vertical polarization. The
main difference is that the gradient ratio changes more slowly with the snow depth than in
the case of vertical polarization.

Based on the simulations above, we compared GR(10.7 V/18.7 V) and GR(10.7 V/
36.5 V) under different densities, correlation lengths, and layering methods. The vertical
polarized GRs on FYI are shown in Figure 5.
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Figure 5. Variation in GRs with snow depth on FYI under different conditions. (a) GR(10.7 V/18.7 V); (b) GR(10.7 V/36.5 V).

“D1–1” to “D4–4” represent different snow conditions in the single layer simulations,
as listed in Table 2, whereas “5 cm” denotes the simulations with snow layered every 5 cm.

Figure 5 shows that on FYI, GR(10.7 V/18.7 V) decreases near-linearly with increasing
snow depth in various environments, and decreases faster with increasing particle size.
When the particle size is constant, a smaller density results in a faster decrease inGR.
Meanwhile, GR(10.7 V/36.5 V) decreases linearly with the increase in snow depth for small
particle size. When the snow depth is less than about 50 cm and the particle size increases,
the ratio decreases as the snow depth increases, and then becomes saturated. This is mainly
because, as the particle size of snow becomes larger, the scattering of microwave signals by
snow gradually increases, which leads to faster changes in TBs with snow depth. Because
the scattering of microwave signals is greater at high frequency than at low frequency, the
signal attenuation becomes very fast as the particle size increases and becomes saturated at
a certain snow depth, which will result in GRs that no longer decrease as the snow depth
increases. In some extreme cases, the GR will even increase as snow depth increases when
the TB change at high frequency is lower than that at low frequency.

The case for MYI is shown in Figure 6.
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Table 2. Settings of snow density, particle size, and correlation length in single layer simulation.

Code

FYI MYI

Particle Size
(mm)

Snow Density
(kg/m3)

Correlation
Length (mm)

Particle Size
(mm)

Snow Density
(kg/m3)

Correlation
Length (mm)

D1–1 0.5 200 0.078 0.5 200 0.078

D1–2 0.5 250 0.073 0.5 260 0.072

D1–3 0.5 300 0.067 0.5 330 0.064

D1–4 0.5 350 0.062 0.5 400 0.056

D2–1 1.0 200 0.156 1.2 200 0.188

D2–2 1.0 250 0.145 1.2 260 0.172

D2–3 1.0 300 0.135 1.2 330 0.154

D2–4 1.0 350 0.124 1.2 400 0.135
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Table 2. Cont.

Code

FYI MYI

Particle Size
(mm)

Snow Density
(kg/m3)

Correlation
Length (mm)

Particle Size
(mm)

Snow Density
(kg/m3)

Correlation
Length (mm)

D3–1 1.5 200 0.235 1.8 200 0.281

D3–2 1.5 250 0.218 1.8 260 0.258

D3–3 1.5 300 0.202 1.8 330 0.230

D3–4 1.5 350 0.185 1.8 400 0.203

D4–1 2.0 200 0.313 2.5 200 0.390

D4–2 2.0 250 0.291 2.5 260 0.358

D4–3 2.0 300 0.269 2.5 330 0.320

D4–4 2.0 350 0.247 2.5 400 0.282

5 cm 1.2 300 0.15 1.8 350 0.2

Similar to the case of FYI, GR(10.7 V/18.7 V) decreases almost linearly with increasing
snow depth, except in extreme cases. With increasing particle size, the GRs gradually
increase. GR(10.7 V/36.5 V) also decreases with increasing snow depth when the snow
depths are below 30 cm and then remains fairly constant. When the snow particle size is
large, this gradient ratio increases with snow depth.

To further analyze the relationship between TBs (GRs) and snow depths, correlation
coefficients between them are presented in Table 3.

Table 3. Correlation coefficients between TBs (GRs) and snow depths.

Parameter Correlation Coefficient (FYI) Correlation Coefficient (MYI)

TB(10.7 V) −0.764 −0.529
TB(18.7 V) −0.879 −0.524
TB(36.5 V) −0.956 −0.355

GR(10.7 V/18.7 V) −0.993 −0.523
GR(10.7 V/36.5 V) −0.955 −0.323

Based on the sensitivity and correlation analyses above, the GR(10.7 V/18.7 V) and
TB(36.5 V) are the best parameters for snow depth retrieval on FYI, whereas TB(10.7 V),
TB(18.7 V), and GR(10.7 V/18.7 V) are best for MYI.

4. Snow Depth Retrieval
4.1. Algorithm Development

Based on the analysis above, snow depth retrieval on Arctic sea ice is explored using
FY3B/MWRI TB and OIB snow depth data. As the OIB IDCSI4 data and MWRI have a
three-year overlap time (2011–2013), we chose data from 2012 and 2013 to develop the
retrieval algorithm and used 2011 data for algorithm verification.

4.1.1. Data Preprocessing

First, datasets were preprocessed, including deleting invalid data, re-gridding the SIT
data, and averaging and projecting TBs from MWRI and snow depths from OIB. Second,
we matched the TBs and snow depths. Afterwards, according to SIT data, we classified
them into two datasets for FYI and MYI, separately. Two-thirds of each dataset were used
for algorithm development, and one-third was for calibration. The numbers of the match
up data for algorithm development and calibration are listed in Table 4. Figures 7 and 8
show histograms of snow depths for different usage.
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Table 4. The amount of snow depth data for algorithm development and verification.

Type of Data FYI MYI

Algorithm development 508 814
Algorithm calibration 254 407

Total 762 1221
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On FYI, the average snow depth of the algorithm development is 12.98 cm, and the
Std is 4.54 cm; for the calibration dataset, the average snow depth is 12.91 cm, and the Std
is 4.39 cm. Meanwhile, on MYI, the average value of the algorithm development data is
28.75 cm, and the Std is 6.64 cm; for the calibration dataset, the corresponding values are
28.69 cm and 6.56 cm. The locations of OIB data in 2012 and 2013 are shown in Figure 9.
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4.1.2. Algorithm Development

According to Section 3, we selected GR(10.7 V/18.7 V) and TB(36.5 V) for snow depth
retrieval on FYI, and TB(10.7 V), TB(18.7 V), and GR(10.7 V/18.7 V) for MYI. The sea ice
concentrations were calculated using the Arctic Radiation and Turbulence Interaction Study
Sea Ice (ASI) algorithm with improved tie points [58].

• FYI

According to our sensitivity analysis, the relations between TBs (GRs) and the snow
depth on FYI are approximately linear. Therefore, the possible equations for the retrieval
algorithm are as follows:

SD = a + b* TB(36.5 V) (2)

SD = a + b* GR(10.7 V/18.7 V) (3)

SD = a + b*GR(10.7 V/18.7 V) + c* TB(36.5 V) (4)
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where SD refers to snow depth in cm; a, b, and c are algorithm coefficients calculated by
the development dataset. The fitting results of different coefficients for Equations (2)–(4)
are shown in Figure 10.
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The fitting results show that the three equations perform similarly. They were then
verified by using the TBs from the calibration data to calculate the snow depths with
different retrieval algorithms, and the results were compared with the OIB snow depths
from the calibration data shown in Figure 11. Table 5 presents the statistics of the calibration.
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Table 5. Statistics of the calibration results on FYI.

Equation Bias (cm) Std (cm) RMSE (cm) Correlation Coefficient

2 0.02 3.78 3.78 0.51
3 −0.01 3.72 3.72 0.53
4 0 3.71 3.71 0.54

Based on Figure 11 and Table 5, we can conclude that the algorithm corresponding to
Equation (4) performs the best. As shown in Figures 10 and 11, there is poor performance
for all methods in relatively deep snow. The main reason is that data larger than 20 cm in
the development dataset are very rare, so the algorithm can obtain better results at low
snow depth values than at high ones. When the field snow depth data, especially the
deep snow data on FYI, are sufficient, the algorithm can later be upgraded. In this study,
according to Figure 11 and Table 5, the retrieval algorithm for FYI is

SD = 54.45 − 703.41*GR(10.7 V/18.7 V) − 0.17* TB(36.5 V). (5)

• MYI

As for FYI, the algorithms for MYI are considered as follows.

SD = a + b* TB(10.7 V) (6)

SD = a + b* TB(18.7 V) (7)

SD = a + b* TB(10.7 V) + c* TB(18.7 V) (8)

SD = a + b*GR(10.7 V/18.7 V) + c* TB(10.7 V) (9)

SD = a + b*GR(10.7 V/18.7 V) + c* TB(18.7 V) (10)

SD = a + b*GR(10.7 V/18.7 V) + c* TB(10.7 V) + d* TB(18.7 V) (11)

The fitting results, using match up data for algorithm development, are shown in
Figure 12.

Similar to the algorithm development for FYI, the above algorithms were used to
calculate the snow depths corresponding to the TBs from calibration dataset. The retrieved
snow depths were then compared with the snow depths from OIB. The results are shown
in Figure 13.

The calibration results of each algorithm are listed in Table 6.

Table 6. Statistics of calibration results on MYI.

Equation Bias (cm) Std (cm) RMSE (cm) Correlation Coefficient

6 −0.18 6.02 6.02 0.52
7 −0.02 6.26 6.26 0.46
8 −0.07 5.98 5.98 0.53
9 −0.08 5.98 5.98 0.53

10 −0.06 5.97 5.97 0.53
11 −0.05 5.97 5.97 0.53
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Figure 13 and Table 6 indicate that a combination of GR(10.7 V/18.7 V), TB(10.7 V),
and TB(18.7 V) yields the highest accuracy. Therefore, the snow depth retrieval algorithm
on MYI is

SD = 295.15 + 568.58*GR(10.7 V/18.7 V) + 0.41*TB(10.7 V) − 1.52*TB(18.7 V). (12)

4.2. Comparison and Verification

Based on the retrieval algorithms, we calculated daily Arctic snow depths using
FY3B/MWRI TBs from January–May 2011. It should be mentioned that, when determining
the sea ice type in the retrieval process, the intensity ratio method was used to distinguish
the FYI and the MYI [59]. To eliminate the influence of grain size uncertainties, density
variations, and sporadic weather effects, three-day averaged snow depths were used. In
this process, we set the melting flags and variable flags on points where the snow was
melted or the snow depth had great variation over three days. Figure 14 shows the snow
depth distribution on 3 January 2011, as an example.
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This figure denotes the averaged snow depth for three days from 1–3 January 2011. To
eliminate the influence of land on the retrieval, we removed the data close to land using a
3 × 3 grid mask.

4.2.1. Comparison with Other Datasets

To evaluate the algorithm, a comparative analysis was conducted against three snow
depth datasets. The time coverage of SD_UB is from November to April/May, and the data
for MYI began on 1 March each year. Considering that, we compared the snow depths on
the FYI from January–April 2011 in the three datasets, and on MYI in two datasets, the
snow depths of this study (RSD) and SD_UB from March to April 2011 (there are no SD_UB
data after 24 April 2011). Finally, we had 111 days for comparison on FYI and 55 days on
MYI. As an example, the snow depths from the three datasets on 1 March 2011, are shown
in Figure 15.
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We can see in Figure 15 that the snow depths retrieved in this study (RSD) are lower
than those of the other two datasets on FYI, but higher than that of SD_UB on MYI. The
differences are shown in Figure 16.
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On FYI, the snow depth differences between RSD and AMSR-E are the smallest, less
than 5 cm in most areas. The differences between RSD and SD_UB are the clearest—5–10
cm lower in RSD than in SD_UB on average. The snow depths of AMSR-E are also lower
than those of SD_UB, while for MYI, the snow depths of RSD are lower than those of
SD_UB, and in many areas, the differences are very similar to those with respect to FYI.

We then compared the three datasets monthly to see if there were monthly changes.
The statistical results are presented in Tables 7 and 8.

Table 7. Statistics of snow depth differences (RSD minus AMSR-E).

Month Number of Matchup Data Bias (cm) Std (cm) RMSE (cm)

1 1243520 −1.59 4.16 4.45
2 1316703 −1.75 4.03 4.39
3 1509787 −2.80 4.26 5.10
4 1102124 −4.64 4.76 6.65

All 5172134 −2.63 3.47 4.35

Table 8. Statistics of snow depth differences (RSD minus SD_UB).

Area Month Number of
Matchup Data Bias (cm) Std (cm) RMSE (cm)

FYI

1 1243520 −7.06 3.43 7.85
2 1316703 −6.56 3.52 7.44
3 1509787 −6.64 3.48 7.50
4 1102124 −6.35 3.37 7.19

All 5172134 −6.66 4.44 8.00

FYI and MYI
3 1977770 −6.34 3.58 7.28
4 1424654 −6.36 3.38 7.30

All 3402424 −6.35 3.50 7.25

It appears that the snow depths from RSD are lower than those from AMSR-E and
SD_UB. The bias between RSD and the AMSR-E product ranges from −4.64 to −1.59 cm,
and the Std is from 4.03 to 4.76 cm. The bias is relatively small in January and February
compared with that in March and April, and the overall deviation is −2.63 cm. When
compared with the SD_UB data, the bias and Std are relatively concentrated on both FYI
and the entire sea ice. The bias on FYI is −6.66 cm, while the Std is 4.44 cm. For all datasets,
the bias is −6.35 cm, and the Std is 3.5 cm. The results show that the retrieval algorithm
presented in this study is closer to the AMSR-E product on FYI, and the difference between
RSD and SD_UB changes little from FYI to the entire sea ice.

The main reasons for the differences between the snow depths from RSD and other
products are as follows: (1) differences caused by different retrieval algorithms of snow
depth. The three datasets are produced by three algorithms using different channels and
forms, which will lead to snow depth differences. (2) Differences caused by different
sensors. This study is based on FY3B/MWRI TBs, while the other two datasets are based
on Aqua/AMSR-E data. Differences in TBs may lead to snow depth differences. The
in-orbit calibration and quality evaluation of FY3B/MWRI conducted by Yang et al. [30,60]
indicate that the calibration accuracy of the sensor meets the design requirements, that is,
the high-frequency channel reaches 2.5 K and the low-frequency channel 2 K. According to
Chen [61], the TB differences between MWRI and AMSR-E in different channels can be up
to 4 K, and for the vertical channels used in this study, the biases are about 3 K with a Std of
3 K. According to our sensitivity analysis, a 6 K difference in TB on low-frequency channels
can lead to snow depth differences of up to 5 cm. (3) Snow depth differences induced by
different sea ice classification methods. In AMSR-E products, the MYI is determined by
setting the threshold of GR(18.7 V/36.5 V) to −0.02; SD_UB uses the SIT product to identify
MYI. In this study, we explored an intensity ratio method to identify ice type based on
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the TB. A dynamic threshold was also adopted. (4) Errors produced by different sea ice
concentrations. In this study, we used the ASI algorithm with improved tie points; SD_UB
also uses the ASI algorithm, whereas the AMSR-E product applies the NT2 algorithm.
From the sensitivity analysis above, a 10% error in sea ice concentration would produce a
snow depth error of up to 5 cm in areas of low sea ice concentrations, thus leading to the
difference among the three snow depth datasets.

4.2.2. Algorithm Verification

To evaluate the algorithm accurately, we verified the three groups of snow depths
against the OIB data from 2011 for FYI and MYI conditions. Histograms and spatial
distributions of the snow depth data for verification are shown in Figures 17 and 18,
respectively.
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After data preprocessing, we obtained 42 matchup data for FYI and 784 for MYI. The
average snow depth on the FYI is 12.19 cm, and the Std is 4.41 cm; the average snow depth
on MYI is 23.68 cm, with a Std of 5.74 cm. The verification results are presented in Table 9.
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Table 9. Algorithm verification results.

Sea Ice Type Data Set Minus OIB Bias (cm) Std (cm) RMSE (cm) Mean Relative Error (%)

First-year
AMSR-E 4.54 2.80 5.33 43.58
SD_UB 8.29 3.00 8.82 81.62

RSD 2.89 2.60 3.89 31.02

Multiyear SD_UB 7.59 4.71 8.93 36.29
RSD 1.44 4.53 4.75 18.59

Table 9 shows that the biases of RSD on FYI and MYI are 2.89 and 1.44 cm, respectively,
with Stds of 2.6 and 4.53 cm. These statistics are better than those corresponding to the
other two data products.

A comparison of the three datasets minus the OIB data is shown in Figure 19.
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Figure 19. Differences in snow depth on FYI between three datasets and OIB on 42 matchup points.

The difference between RSD and OIB on FYI tends to be less than 5 cm, which accounts
for 86% of the total data. It accounts for only 9% of the SD_UB data and 67% of the AMSR-E
data, which is consistent with previous research [17,20].

For MYI, histograms of the snow depth differences are displayed in Figure 20.
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The differences between RSD and OIB on MYI tend to be within ±5 cm, accounting
for 71% of the total data; the differences between SD_UB and OIB are up to 8 cm, similar to
those reported by Braakmann-Folgmann and Donlon [28].

The following issues may cause differences between RSD and OIB: (1) Spatial and
temporal differences between OIB and MWRI data. First, the OIB data are observed on a
certain point and certain time, whereas the snow depths from MWRI are calculated from
daily average TB data. The time difference may lead to different results. Second, the grid
resolution of MWRI data is 12.5 km, whereas the OIB is 40 m. Insufficient OIB data may
introduce errors during processing. (2) Limited data for algorithm development, which
will lead to errors. The number of OIB datasets is limited and they are mainly collected
from the Beaufort Sea and Central Arctic region, which may introduce errors when using
them to develop an algorithm for the entire Arctic. (3) Retrieval errors caused by errors in
sea ice concentration. (4) OIB systematic errors. Kurtz et al. [62] showed that the average
error in the snow depths from OIB data is about 5.7 cm, which will induce errors in snow
depth retrieval. (5) Retrieval errors caused by different sea ice and snow conditions. The
sensitivity analysis reported in this study indicated that different snow particle sizes and
snow densities will influence the scattering of microwave signals. The algorithm developed
herein deals with snow depth retrieval only under the general state, and may induce errors
when extreme conditions occur. (6) Errors caused by sea ice classification. As the physical
properties of FYI and MYI are different, this study adopts different retrieval algorithms for
them. Misclassification of sea ice type will lead to misuse of the algorithm and result in
retrieval errors.

5. Conclusions

Based on the TBs from the FY3B/MWRI, a study of snow depth retrieval in the Arctic
was conducted for both first-year and multiyear ice. Starting from the physical process of
microwave signal transmission in ice, snow, and the atmosphere, the influence of snow
depth variations on surface observed TBs was analyzed, along with their correlation based
on radiative transfer theory. This sensitivity analysis was based on the physical simulation
of the microwave transmission process, which is more reasonable and credible. On this
basis, the optimal channel combinations and forms for snow depth retrieval were proposed
on Arctic sea ice using TBs from the FY3B/MWRI. An algorithm for snow depth retrieval
was then developed using TBs from the FY3B/MWRI and snow depths from OIB, on
both FYI and MYI in the Arctic. Verification results indicated that the bias and Std of the
algorithm developed in this study were 2.89 and 2.6 cm, respectively, on FYI, and 1.44 and
4.53 cm, respectively, on MYI. It can be concluded that the snow depths derived herein
are effective and in good agreement with OIB data. The proposed algorithm was proven
useful for the effective retrieval of snow depth on sea ice from FY3B/MWRI TBs in the
Arctic. Importantly, this study provides the first algorithm of snow depths from MWRI
that realizes the full coverage of the Arctic sea ice.

Of course, the algorithm still has some limitations. For example, due to the strong
absorption of microwave radiation by liquid water, the microwave signal cannot penetrate
wet snow. Therefore, the snow depth retrieval using microwave radiometers, including
the algorithm in this study, can only calculate the dry snow. A multi sensor combination
method to calculate wet snow depth may be taken into account in a future study. Moreover,
we will call for more attention to the continuous collection of field snow depth data,
including snow profiles for snow density and snow grain size, to further simulate the effect
of snow depth on observed TBs in various snow profiles, together with deep snow data on
FYI and MYI, e.g., from the MOSAiC (Multidisciplinary drifting Observatory for the Study
of Arctic Climate), to ensure sufficient snow depth data in all numerical ranges. As analysis
of the sensitivity of MWRI TBs to snow depths is decided by physical modeling, it does
not depend on field datasets. With the increase of in situ snow depth data, the algorithm
can be upgraded, but the channels and parameters will remain unchanged.
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